58 lines
1.9 KiB
Python
58 lines
1.9 KiB
Python
import numpy as np
|
|
import cv2
|
|
import math
|
|
|
|
|
|
def remove_dft(img, rate):
|
|
"""
|
|
Diese Implementierung wendet die diskrete Fourier Transformation auf das Bild img an. Daraufhin werden die hoch-
|
|
frequenten Anteile anteilig der Rate rate entfernt. Am Ende wird das Bild wieder in den Bildbereich transformiert.
|
|
:param img:
|
|
:param rate:
|
|
:return:
|
|
"""
|
|
assert rate <= 1, "Die Rate muss kleiner gleich 1 sein!"
|
|
|
|
height, width = img.shape
|
|
for i in range(math.ceil(width / 8)):
|
|
for j in range(math.ceil(height / 8)):
|
|
# Block extrahieren
|
|
block = np.zeros((8, 8))
|
|
horizontal_pixel, vertical_pixel = min(8, width - i * 8), min(8, height - j * 8)
|
|
block[0:vertical_pixel, 0:horizontal_pixel] = \
|
|
img[j * 8: (j * 8) + vertical_pixel, i * 8: (i * 8) + horizontal_pixel]
|
|
# In den Frequenzbereich tranformieren
|
|
block_freq = np.fft.fft2(block)
|
|
# Hochfrequente Anteile löschen
|
|
values_to_delete = 8 * 8 * rate
|
|
values_deleted = 0
|
|
for m in range(0, 16):
|
|
for n in range(0, m + 1):
|
|
if values_deleted >= values_to_delete:
|
|
break
|
|
if 7 - m + n < 0 or 7 - n < 0:
|
|
continue
|
|
block_freq[7 - m + n, 7 - n] = 0. + 0.j
|
|
values_deleted += 1
|
|
|
|
# Rücktransformation in den Bildbereich
|
|
block = np.fft.ifft2(block_freq)
|
|
# Einfügen in Ursprungsbild
|
|
img[j * 8: (j * 8) + vertical_pixel, i * 8: (i * 8) + horizontal_pixel] = \
|
|
block[0:vertical_pixel, 0:horizontal_pixel]
|
|
|
|
return img
|
|
|
|
|
|
''' Bild laden '''
|
|
img = cv2.imread("../../data/cameraman.png")
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
img = (img / 256).astype(np.float32)
|
|
|
|
''' Funktion anwenden '''
|
|
img = remove_dft(img, 0.9)
|
|
|
|
''' Bild anzeigen '''
|
|
cv2.imshow("IMG", img)
|
|
cv2.waitKey(0)
|