Files

42 lines
1.3 KiB
Python

import numpy as np
import cv2
def get_motion_psf(kernel_size, motion_angle, motion_dis):
""" "Point Spread Function" um Bewegung zu simulieren """
psf = np.zeros(kernel_size) # point spread function
x_center = (kernel_size[0] - 1) / 2
y_center = (kernel_size[1] - 1) / 2
sin_val = np.sin(motion_angle * np.pi / 180)
cos_val = np.cos(motion_angle * np.pi / 180)
for i in range(motion_dis):
x_offset = round(sin_val * i)
y_offset = round(cos_val * i)
psf[int(x_center - x_offset), int(y_center + y_offset)] = 1
return psf / psf.sum()
''' Bild laden und in den Frequenzraum transformieren '''
img = cv2.imread("../../data/eth_blurred.png", cv2.IMREAD_GRAYSCALE)
IMG = np.fft.fft2(img)
''' Erstellen des Filterkernels und Transformation in den Frequenzraum '''
rows, cols = img.shape
h = get_motion_psf(kernel_size=(rows, cols), motion_angle=11, motion_dis=31)
h = np.fft.fftshift(h) # Muss gemacht werden, da der "Motion Blur Vector" mittig zentriert ist
H = np.fft.fft2(h)
H[np.abs(H) < 0.01] = 0.01 # Begrenzen der Degradationsfunktion um numerische Probleme zu verhindern
''' Inverses Filter anwenden '''
IMG_FILTERED = IMG / H
img_filtered = np.fft.ifft2(IMG_FILTERED).clip(0, 255).astype(np.uint8)
''' Ergebnis anzeigen '''
cv2.imshow("Original", img)
cv2.imshow("Inverses Filter", img_filtered)
cv2.waitKey()