import cv2 import numpy as np from . import Algorithm class MotionDetector(Algorithm): """ Converts a BGR image to grayscale""" def __init__(self): self.image_count = 0 self.background = None self.motion_field = None self.background_update_rate = 0.5 self.motion_update_rate = 0.3 self.threshold = 50 def process(self, img): img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) h, w = img_gray.shape blurred_img = cv2.resize(img_gray, (int(w/2), int(h/2)), interpolation=cv2.INTER_NEAREST) blurred_img = cv2.GaussianBlur(blurred_img, (15, 15), 0) if self.background is None: self.background = blurred_img self.motion_field = np.zeros_like(blurred_img) self.background = (1 - self.background_update_rate) * self.background + self.background_update_rate * blurred_img diff = blurred_img - self.background diff_abs = np.abs(diff) diff_rel = np.clip(diff_abs, 0, self.threshold) / self.threshold self.motion_field = (1 - self.motion_update_rate) * self.motion_field + self.motion_update_rate * diff_rel motion_field = cv2.resize(self.motion_field, (w, h), interpolation=cv2.INTER_NEAREST) motion_field = np.expand_dims(motion_field, 2) colormap = cv2.applyColorMap((motion_field * 255).astype(np.uint8), cv2.COLORMAP_HOT) img_gray = np.stack([img_gray, img_gray, img_gray], axis=2) final_image = 0.5 * img_gray * (1 - motion_field) + colormap * motion_field final_image = final_image.astype(np.uint8) self.image_count += 1 return final_image