import numpy as np import cv2 ''' Load image ''' img = cv2.imread("data/bild.png", cv2.IMREAD_GRAYSCALE) cv2.imshow("img", img) ''' Iterate over rows / columns''' label_map = np.zeros_like(img) next_id = 1 for i in range(img.shape[0]): for j in range(img.shape[1]): if img[i, j] != 0: upper_label = label_map[i - 1, j] if i > 0 else 0 left_label = label_map[i, j - 1] if j > 0 else 0 if upper_label == 0 and left_label == 0: label_map[i, j] = next_id next_id += 1 elif upper_label == 0 and left_label != 0: label_map[i, j] = left_label elif upper_label != 0 and left_label == 0: label_map[i, j] = upper_label elif upper_label != 0 and left_label != 0: if upper_label == left_label: label_map[i, j] = upper_label else: new_label = min(upper_label, left_label) old_label = max(upper_label, left_label) label_map[label_map == old_label] = new_label label_map[i, j] = new_label ''' Rename labels (not necessary, but for visualisation) ''' labels = sorted(np.unique(label_map)) next_id = 1 for l in labels: if l == 0: continue label_map[label_map == l] = next_id next_id += 1 ''' Visualize label map ''' color_map = { 1: [255, 0, 0], 2: [255, 255, 0], 3: [255, 255, 255], 4: [0, 255, 0], 5: [0, 255, 255], 6: [0, 0, 255], 7: [100, 100, 100], 8: [50, 200, 80], 9: [200, 140, 88], 10: [120, 0, 190], } colored_image = np.zeros((img.shape[0], img.shape[1], 3)) for c, value in color_map.items(): colored_image[label_map == c] = value cv2.imshow("colored_image", colored_image.astype(np.uint8)) cv2.waitKey(0)