Initial commit with project files

This commit is contained in:
2025-06-27 14:34:11 +02:00
commit 7ea3207e63
310 changed files with 9331 additions and 0 deletions

View File

@@ -0,0 +1,179 @@
"""
Many thanks to https://github.com/vardanagarwal/Proctoring-AI/blob/master/coco models/tflite mobnetv1 ssd
"""
import cv2
import numpy as np
import multiprocessing
import threading
import os
from copy import copy
from time import sleep
from . import Algorithm
""" Check if neural network accelerator is existing """
try_edgetpu = True
try:
if not try_edgetpu:
raise Exception()
from pycoral.adapters import common
from pycoral.adapters import detect
from pycoral.utils.dataset import read_label_file
from pycoral.utils.edgetpu import make_interpreter, list_edge_tpus
if len(list_edge_tpus()) == 0:
raise Exception()
engine = "edgetpu"
except Exception as e:
import tensorflow as tf
engine = "tflite"
class Detector:
def __init__(self):
self.category_index = self.create_category_index()
if engine == "tflite":
self.num_threads = int(multiprocessing.cpu_count())
print("Self using %s threads for object detection" % self.num_threads)
self.interpreter = tf.lite.Interpreter(
model_path="data" + os.sep + "ssd_mobilenet_v2_coco_quant_postprocess.tflite", num_threads=self.num_threads
)
self.interpreter.allocate_tensors()
# Get input and output tensors.
self.input_details = self.interpreter.get_input_details()
self.output_details = self.interpreter.get_output_details()
elif engine == "edgetpu":
print("Running with edge tpu")
self.interpreter = make_interpreter("data" + os.sep + "ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite")
self.interpreter.allocate_tensors()
# Get input and output tensors.
self.input_details = self.interpreter.get_input_details()
self.output_details = self.interpreter.get_output_details()
def create_category_index(self, label_path='data' + os.sep + 'labelmap.txt'):
f = open(label_path)
category_index = {}
for i, val in enumerate(f):
if i != 0:
val = val[:-1]
category_index.update({(i - 1): {'id': (i - 1), 'name': val}})
f.close()
return category_index
def get_output_dict(self, nms=True, iou_thresh=0.5, score_thresh=0.5):
output_dict = {
'detection_boxes': self.interpreter.get_tensor(self.output_details[0]['index'])[0],
'detection_classes': self.interpreter.get_tensor(self.output_details[1]['index'])[0],
'detection_scores': self.interpreter.get_tensor(self.output_details[2]['index'])[0],
'num_detections': self.interpreter.get_tensor(self.output_details[3]['index'])[0]
}
output_dict['detection_classes'] = output_dict['detection_classes'].astype(np.int64)
output_dict["detection_classes_name"] = [self.category_index[x] for x in output_dict["detection_classes"]]
if nms and engine == "tflite":
output_dict = self.apply_nms(output_dict, iou_thresh, score_thresh)
if nms and engine == "edgetpu":
valid = np.where(output_dict["detection_scores"] >= score_thresh)[0]
if valid.size == 0:
output_dict = {}
elif valid.size == 1:
output_dict = {
'detection_boxes': output_dict["detection_boxes"][valid[0]:valid[0] + 1],
'detection_classes': output_dict["detection_classes"][valid[0]:valid[0] + 1],
'detection_scores': output_dict["detection_scores"][valid[0]:valid[0] + 1],
'detection_classes_name': output_dict["detection_classes_name"][valid[0]:valid[0] + 1],
'num_detections': 1,
}
else:
output_dict = {
'detection_boxes': output_dict["detection_boxes"][valid],
'detection_classes': output_dict["detection_classes"][valid],
'detection_scores': output_dict["detection_scores"][valid],
'detection_classes_name': [x for i,x in enumerate(output_dict["detection_classes_name"]) if i in valid],
'num_detections': valid.size,
}
return output_dict
def apply_nms(self, output_dict, iou_thresh=0.5, score_thresh=0.5):
q = 90 # no of classes
num = int(output_dict['num_detections'])
boxes = np.zeros([1, num, q, 4])
scores = np.zeros([1, num, q])
# val = [0]*q
for i in range(num):
# indices = np.where(classes == output_dict['detection_classes'][i])[0][0]
boxes[0, i, output_dict['detection_classes'][i], :] = output_dict['detection_boxes'][i]
scores[0, i, output_dict['detection_classes'][i]] = output_dict['detection_scores'][i]
nmsd = tf.image.combined_non_max_suppression(
boxes=boxes, scores=scores, max_output_size_per_class=num, max_total_size=num, iou_threshold=iou_thresh,
score_threshold=score_thresh, pad_per_class=False, clip_boxes=False
)
valid = nmsd.valid_detections[0].numpy()
output_dict = {
'detection_boxes': nmsd.nmsed_boxes[0].numpy()[:valid],
'detection_classes': nmsd.nmsed_classes[0].numpy().astype(np.int64)[:valid],
'detection_scores': nmsd.nmsed_scores[0].numpy()[:valid],
'detection_classes_name': output_dict["detection_classes_name"][:valid]
}
return output_dict
def make_inference(self, img, nms=True, score_thresh=0.5, iou_thresh=0.5):
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_rgb = cv2.resize(img_rgb, (300, 300), cv2.INTER_AREA)
img_rgb = img_rgb.reshape([1, 300, 300, 3])
self.interpreter.set_tensor(self.input_details[0]['index'], img_rgb)
self.interpreter.invoke()
output_dict = self.get_output_dict(nms, iou_thresh, score_thresh)
return output_dict
class ObjectDetector(Algorithm):
""" Detects objects """
def __init__(self):
""" Init some values and set seed point to None """
self.objects = dict()
self.detection_image = None
self.lock = threading.Lock()
self.thread = threading.Thread(target=self._detect, args=[], daemon=True)
self.thread.start()
def process(self, img):
"""
Tries to segment a region around the seed point and calculates a new seed point by finding the segments center
"""
with self.lock:
if self.detection_image is None:
self.detection_image = np.copy(img)
with self.lock:
objects = copy(self.objects)
h, w, c = img.shape
if "detection_classes_name" in objects.keys():
for i, cls in enumerate(objects["detection_classes_name"]):
box = objects["detection_boxes"][i]
score = objects["detection_scores"][i]
name = cls["name"]
y1, x1, y2, x2 = round(box[0] * h), round(box[1] * w), round(box[2] * h), round(box[3] * w)
img = cv2.rectangle(img, (x1, y1), (x2, y2), color=(0, 0, 0), thickness=2)
img = cv2.putText(img, "%s: %.2f" % (name, score), (x1, y1), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 0))
return img
def _detect(self):
detector = Detector()
while True:
with self.lock:
img = self.detection_image
if img is None:
sleep(.033)
continue
objects = detector.make_inference(img)
with self.lock:
self.objects = objects
self.detection_image = None
def mouse_callback(self, event, x, y, flags, param):
""" Selects a new seed point"""
if event == cv2.EVENT_LBUTTONUP:
pass