Initial commit with project files
This commit is contained in:
38
CV-App/algorithms/__init__.py
Normal file
38
CV-App/algorithms/__init__.py
Normal file
@@ -0,0 +1,38 @@
|
||||
|
||||
|
||||
class Algorithm:
|
||||
""" An abstract class to create custom algorithms """
|
||||
def process(self, img):
|
||||
""" Processes the input image"""
|
||||
return img
|
||||
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
""" Reacts on mouse callbacks """
|
||||
return
|
||||
|
||||
|
||||
''' Import algorithms to use'''
|
||||
from .image_to_gray import ImageToGray
|
||||
from .image_to_hue import ImageToHue
|
||||
from .motion_detector import MotionDetector
|
||||
from .white_balancing import WhiteBalancing
|
||||
from .spin import Spin
|
||||
from .segmentation_tracker import SegmentationTracker
|
||||
#from .object_detection import ObjectDetector
|
||||
#from .bottle_detection import BottleDetector
|
||||
from .invis_cloak import InvisCloak
|
||||
from .canny_edges import CannyEdgeDetector
|
||||
|
||||
''' Link Algorithms to keys '''
|
||||
algorithms = dict()
|
||||
algorithms["0"] = Algorithm
|
||||
algorithms["1"] = ImageToGray
|
||||
algorithms["2"] = ImageToHue
|
||||
algorithms["3"] = MotionDetector
|
||||
algorithms["4"] = WhiteBalancing
|
||||
algorithms["5"] = Spin
|
||||
algorithms["6"] = SegmentationTracker
|
||||
algorithms["7"] = InvisCloak
|
||||
#algorithms["7"] = ObjectDetector
|
||||
#algorithms["8"] = BottleDetector
|
||||
algorithms["9"] = CannyEdgeDetector
|
||||
69
CV-App/algorithms/bottle_detection.py
Normal file
69
CV-App/algorithms/bottle_detection.py
Normal file
@@ -0,0 +1,69 @@
|
||||
"""
|
||||
Many thanks to https://github.com/vardanagarwal/Proctoring-AI/blob/master/coco models/tflite mobnetv1 ssd
|
||||
"""
|
||||
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import threading
|
||||
from copy import copy
|
||||
from time import sleep
|
||||
|
||||
from . object_detection import Detector
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class BottleDetector(Algorithm):
|
||||
""" Detects objects """
|
||||
|
||||
def __init__(self):
|
||||
""" Init some values and set seed point to None """
|
||||
self.objects = dict()
|
||||
self.detection_image = None
|
||||
self.lock = threading.Lock()
|
||||
self.thread = threading.Thread(target=self._detect, args=[], daemon=True)
|
||||
self.thread.start()
|
||||
|
||||
def process(self, img):
|
||||
"""
|
||||
Tries to segment a region around the seed point and calculates a new seed point by finding the segments center
|
||||
"""
|
||||
with self.lock:
|
||||
if self.detection_image is None:
|
||||
self.detection_image = np.copy(img)
|
||||
with self.lock:
|
||||
objects = copy(self.objects)
|
||||
h, w, c = img.shape
|
||||
|
||||
if "detection_classes_name" in objects.keys():
|
||||
for i, cls in enumerate(objects["detection_classes_name"]):
|
||||
name = cls["name"]
|
||||
if name in ["bottle", "cup"]:
|
||||
box = objects["detection_boxes"][i]
|
||||
score = objects["detection_scores"][i]
|
||||
y1, x1, y2, x2 = \
|
||||
max(round(box[0] * h) - 20, 0), round(box[1] * w) - 20 ,\
|
||||
max(round(box[2] * h) + 20, 0), round(box[3] * w) + 20
|
||||
if img[y1:y2, x1:x2].size > 0:
|
||||
img[y1:y2, x1:x2] = cv2.medianBlur(img[y1:y2, x1:x2], 31)
|
||||
|
||||
return img.astype(np.uint8)
|
||||
|
||||
def _detect(self):
|
||||
detector = Detector()
|
||||
while True:
|
||||
with self.lock:
|
||||
img = self.detection_image
|
||||
if img is None:
|
||||
sleep(.033)
|
||||
continue
|
||||
objects = detector.make_inference(img, score_thresh=0.1)
|
||||
with self.lock:
|
||||
self.objects = objects
|
||||
self.detection_image = None
|
||||
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
""" Selects a new seed point"""
|
||||
if event == cv2.EVENT_LBUTTONUP:
|
||||
pass
|
||||
|
||||
40
CV-App/algorithms/canny_edges.py
Normal file
40
CV-App/algorithms/canny_edges.py
Normal file
@@ -0,0 +1,40 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class CannyEdgeDetector(Algorithm):
|
||||
""" Converts a BGR image to grayscale"""
|
||||
def __init__(self):
|
||||
self.image_count = 0
|
||||
self.background = None
|
||||
self.background_update_rate = 0.2
|
||||
self.threshold = 15
|
||||
|
||||
def process(self, img):
|
||||
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
h, w = img_gray.shape
|
||||
resized_image = cv2.resize(img_gray, (int(w/2), int(h/2)), interpolation=cv2.INTER_NEAREST)
|
||||
blurred_img = cv2.GaussianBlur(resized_image, (15, 15), 0)
|
||||
|
||||
if self.background is None:
|
||||
self.background = blurred_img
|
||||
self.background = (1 - self.background_update_rate) * self.background + self.background_update_rate * blurred_img
|
||||
|
||||
diff = blurred_img - self.background
|
||||
diff_abs = np.abs(diff)
|
||||
binary_image = diff_abs > self.threshold
|
||||
|
||||
canny_edges = canny(resized_image, 50, 100)
|
||||
|
||||
canny_edges = canny_edges * binary_image
|
||||
canny_edges = cv2.resize(canny_edges, (int(w), int(h)), interpolation=cv2.INTER_NEAREST)
|
||||
|
||||
return canny_edges
|
||||
|
||||
|
||||
def canny(img, thresh1, thresh2):
|
||||
img = cv2.Canny(img, thresh1, thresh2)
|
||||
return img
|
||||
10
CV-App/algorithms/image_to_gray.py
Normal file
10
CV-App/algorithms/image_to_gray.py
Normal file
@@ -0,0 +1,10 @@
|
||||
import cv2
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class ImageToGray(Algorithm):
|
||||
""" Converts a BGR image to grayscale"""
|
||||
def process(self, img):
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
return img
|
||||
13
CV-App/algorithms/image_to_hue.py
Normal file
13
CV-App/algorithms/image_to_hue.py
Normal file
@@ -0,0 +1,13 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class ImageToHue(Algorithm):
|
||||
""" Normalizes a BGR image with color information"""
|
||||
def process(self, img):
|
||||
channel_sum = np.sum(img.astype(np.float32), axis=2, keepdims=True)
|
||||
img_normalized = img.astype(np.float32) * 255 / channel_sum
|
||||
img_normalized = img_normalized.astype(np.uint8())
|
||||
return img_normalized
|
||||
118
CV-App/algorithms/invis_cloak.py
Normal file
118
CV-App/algorithms/invis_cloak.py
Normal file
@@ -0,0 +1,118 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
from copy import deepcopy
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class InvisCloak (Algorithm):
|
||||
|
||||
""" init function """
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
""" Processes the input image"""
|
||||
def process(self, img):
|
||||
|
||||
""" 2.1 Vorverarbeitung """
|
||||
""" 2.1.1 Rauschreduktion """
|
||||
plotNoise = False # Schaltet die Rauschvisualisierung ein
|
||||
if plotNoise:
|
||||
self._plotNoise(img, "Rauschen vor Korrektur")
|
||||
img = self._211_Rauschreduktion(img)
|
||||
if plotNoise:
|
||||
self._plotNoise(img, "Rauschen nach Korrektur")
|
||||
""" 2.1.2 HistogrammSpreizung """
|
||||
img = self._212_HistogrammSpreizung(img)
|
||||
|
||||
|
||||
""" 2.2 Farbanalyse """
|
||||
""" 2.2.1 RGB """
|
||||
self._221_RGB(img)
|
||||
""" 2.2.2 HSV """
|
||||
self._222_HSV(img)
|
||||
|
||||
|
||||
""" 2.3 Segmentierung und Bildmdifikation """
|
||||
img = self._23_SegmentUndBildmodifizierung(img)
|
||||
|
||||
return img
|
||||
|
||||
""" Reacts on mouse callbacks """
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
if event == cv2.EVENT_LBUTTONUP:
|
||||
print("A Mouse click happend! at position", x, y)
|
||||
|
||||
def _plotNoise(self, img, name:str):
|
||||
height, width = np.array(img.shape[:2])
|
||||
centY = (height / 2).astype(int)
|
||||
centX = (width / 2).astype(int)
|
||||
|
||||
cutOut = 5
|
||||
tmpImg = deepcopy(img)
|
||||
tmpImg = tmpImg[centY - cutOut:centY + cutOut, centX - cutOut:centX + cutOut, :]
|
||||
|
||||
outSize = 500
|
||||
tmpImg = cv2.resize(tmpImg, (outSize, outSize), interpolation=cv2.INTER_NEAREST)
|
||||
|
||||
cv2.imshow(name, tmpImg)
|
||||
cv2.waitKey(1)
|
||||
|
||||
def _211_Rauschreduktion(self, img):
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.1.1 (Rauschunterdrückung)
|
||||
- Implementierung Mittelwertbildung über N Frames
|
||||
"""
|
||||
|
||||
|
||||
return img
|
||||
|
||||
def _212_HistogrammSpreizung(self, img):
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.1.2 (Histogrammspreizung)
|
||||
- Transformation HSV
|
||||
- Histogrammspreizung berechnen
|
||||
- Transformation BGR
|
||||
"""
|
||||
|
||||
return img
|
||||
|
||||
def _221_RGB(self, img):
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.2.1 (RGB)
|
||||
- Histogrammberechnung und Analyse
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
def _222_HSV(self, img):
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.2.2 (HSV)
|
||||
- Histogrammberechnung und Analyse im HSV-Raum
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
def _23_SegmentUndBildmodifizierung (self, img):
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.3.1 (StatischesSchwellwertverfahren)
|
||||
- Binärmaske erstellen
|
||||
"""
|
||||
|
||||
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.3.2 (Binärmaske)
|
||||
- Binärmaske optimieren mit Opening/Closing
|
||||
- Wahl größte zusammenhängende Region
|
||||
"""
|
||||
|
||||
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.3.1 (Bildmodifizerung)
|
||||
- Hintergrund mit Mausklick definieren
|
||||
- Ersetzen des Hintergrundes
|
||||
"""
|
||||
|
||||
|
||||
return img
|
||||
45
CV-App/algorithms/motion_detector.py
Normal file
45
CV-App/algorithms/motion_detector.py
Normal file
@@ -0,0 +1,45 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class MotionDetector(Algorithm):
|
||||
""" Converts a BGR image to grayscale"""
|
||||
def __init__(self):
|
||||
self.image_count = 0
|
||||
self.background = None
|
||||
self.motion_field = None
|
||||
self.background_update_rate = 0.5
|
||||
self.motion_update_rate = 0.3
|
||||
self.threshold = 50
|
||||
|
||||
def process(self, img):
|
||||
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
h, w = img_gray.shape
|
||||
blurred_img = cv2.resize(img_gray, (int(w/2), int(h/2)), interpolation=cv2.INTER_NEAREST)
|
||||
blurred_img = cv2.GaussianBlur(blurred_img, (15, 15), 0)
|
||||
|
||||
if self.background is None:
|
||||
self.background = blurred_img
|
||||
self.motion_field = np.zeros_like(blurred_img)
|
||||
|
||||
self.background = (1 - self.background_update_rate) * self.background + self.background_update_rate * blurred_img
|
||||
|
||||
diff = blurred_img - self.background
|
||||
diff_abs = np.abs(diff)
|
||||
diff_rel = np.clip(diff_abs, 0, self.threshold) / self.threshold
|
||||
self.motion_field = (1 - self.motion_update_rate) * self.motion_field + self.motion_update_rate * diff_rel
|
||||
|
||||
motion_field = cv2.resize(self.motion_field, (w, h), interpolation=cv2.INTER_NEAREST)
|
||||
motion_field = np.expand_dims(motion_field, 2)
|
||||
|
||||
colormap = cv2.applyColorMap((motion_field * 255).astype(np.uint8), cv2.COLORMAP_HOT)
|
||||
img_gray = np.stack([img_gray, img_gray, img_gray], axis=2)
|
||||
final_image = 0.5 * img_gray * (1 - motion_field) + colormap * motion_field
|
||||
final_image = final_image.astype(np.uint8)
|
||||
|
||||
self.image_count += 1
|
||||
|
||||
return final_image
|
||||
179
CV-App/algorithms/object_detection.py
Normal file
179
CV-App/algorithms/object_detection.py
Normal file
@@ -0,0 +1,179 @@
|
||||
"""
|
||||
Many thanks to https://github.com/vardanagarwal/Proctoring-AI/blob/master/coco models/tflite mobnetv1 ssd
|
||||
"""
|
||||
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import multiprocessing
|
||||
import threading
|
||||
import os
|
||||
from copy import copy
|
||||
from time import sleep
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
""" Check if neural network accelerator is existing """
|
||||
try_edgetpu = True
|
||||
try:
|
||||
if not try_edgetpu:
|
||||
raise Exception()
|
||||
from pycoral.adapters import common
|
||||
from pycoral.adapters import detect
|
||||
from pycoral.utils.dataset import read_label_file
|
||||
from pycoral.utils.edgetpu import make_interpreter, list_edge_tpus
|
||||
if len(list_edge_tpus()) == 0:
|
||||
raise Exception()
|
||||
engine = "edgetpu"
|
||||
except Exception as e:
|
||||
import tensorflow as tf
|
||||
engine = "tflite"
|
||||
|
||||
|
||||
class Detector:
|
||||
def __init__(self):
|
||||
self.category_index = self.create_category_index()
|
||||
if engine == "tflite":
|
||||
self.num_threads = int(multiprocessing.cpu_count())
|
||||
print("Self using %s threads for object detection" % self.num_threads)
|
||||
self.interpreter = tf.lite.Interpreter(
|
||||
model_path="data" + os.sep + "ssd_mobilenet_v2_coco_quant_postprocess.tflite", num_threads=self.num_threads
|
||||
)
|
||||
self.interpreter.allocate_tensors()
|
||||
# Get input and output tensors.
|
||||
self.input_details = self.interpreter.get_input_details()
|
||||
self.output_details = self.interpreter.get_output_details()
|
||||
elif engine == "edgetpu":
|
||||
print("Running with edge tpu")
|
||||
self.interpreter = make_interpreter("data" + os.sep + "ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite")
|
||||
self.interpreter.allocate_tensors()
|
||||
# Get input and output tensors.
|
||||
self.input_details = self.interpreter.get_input_details()
|
||||
self.output_details = self.interpreter.get_output_details()
|
||||
|
||||
def create_category_index(self, label_path='data' + os.sep + 'labelmap.txt'):
|
||||
f = open(label_path)
|
||||
category_index = {}
|
||||
for i, val in enumerate(f):
|
||||
if i != 0:
|
||||
val = val[:-1]
|
||||
category_index.update({(i - 1): {'id': (i - 1), 'name': val}})
|
||||
f.close()
|
||||
return category_index
|
||||
|
||||
def get_output_dict(self, nms=True, iou_thresh=0.5, score_thresh=0.5):
|
||||
output_dict = {
|
||||
'detection_boxes': self.interpreter.get_tensor(self.output_details[0]['index'])[0],
|
||||
'detection_classes': self.interpreter.get_tensor(self.output_details[1]['index'])[0],
|
||||
'detection_scores': self.interpreter.get_tensor(self.output_details[2]['index'])[0],
|
||||
'num_detections': self.interpreter.get_tensor(self.output_details[3]['index'])[0]
|
||||
}
|
||||
output_dict['detection_classes'] = output_dict['detection_classes'].astype(np.int64)
|
||||
output_dict["detection_classes_name"] = [self.category_index[x] for x in output_dict["detection_classes"]]
|
||||
if nms and engine == "tflite":
|
||||
output_dict = self.apply_nms(output_dict, iou_thresh, score_thresh)
|
||||
if nms and engine == "edgetpu":
|
||||
valid = np.where(output_dict["detection_scores"] >= score_thresh)[0]
|
||||
if valid.size == 0:
|
||||
output_dict = {}
|
||||
elif valid.size == 1:
|
||||
output_dict = {
|
||||
'detection_boxes': output_dict["detection_boxes"][valid[0]:valid[0] + 1],
|
||||
'detection_classes': output_dict["detection_classes"][valid[0]:valid[0] + 1],
|
||||
'detection_scores': output_dict["detection_scores"][valid[0]:valid[0] + 1],
|
||||
'detection_classes_name': output_dict["detection_classes_name"][valid[0]:valid[0] + 1],
|
||||
'num_detections': 1,
|
||||
}
|
||||
else:
|
||||
output_dict = {
|
||||
'detection_boxes': output_dict["detection_boxes"][valid],
|
||||
'detection_classes': output_dict["detection_classes"][valid],
|
||||
'detection_scores': output_dict["detection_scores"][valid],
|
||||
'detection_classes_name': [x for i,x in enumerate(output_dict["detection_classes_name"]) if i in valid],
|
||||
'num_detections': valid.size,
|
||||
}
|
||||
return output_dict
|
||||
|
||||
def apply_nms(self, output_dict, iou_thresh=0.5, score_thresh=0.5):
|
||||
q = 90 # no of classes
|
||||
num = int(output_dict['num_detections'])
|
||||
boxes = np.zeros([1, num, q, 4])
|
||||
scores = np.zeros([1, num, q])
|
||||
# val = [0]*q
|
||||
for i in range(num):
|
||||
# indices = np.where(classes == output_dict['detection_classes'][i])[0][0]
|
||||
boxes[0, i, output_dict['detection_classes'][i], :] = output_dict['detection_boxes'][i]
|
||||
scores[0, i, output_dict['detection_classes'][i]] = output_dict['detection_scores'][i]
|
||||
nmsd = tf.image.combined_non_max_suppression(
|
||||
boxes=boxes, scores=scores, max_output_size_per_class=num, max_total_size=num, iou_threshold=iou_thresh,
|
||||
score_threshold=score_thresh, pad_per_class=False, clip_boxes=False
|
||||
)
|
||||
valid = nmsd.valid_detections[0].numpy()
|
||||
output_dict = {
|
||||
'detection_boxes': nmsd.nmsed_boxes[0].numpy()[:valid],
|
||||
'detection_classes': nmsd.nmsed_classes[0].numpy().astype(np.int64)[:valid],
|
||||
'detection_scores': nmsd.nmsed_scores[0].numpy()[:valid],
|
||||
'detection_classes_name': output_dict["detection_classes_name"][:valid]
|
||||
}
|
||||
return output_dict
|
||||
|
||||
def make_inference(self, img, nms=True, score_thresh=0.5, iou_thresh=0.5):
|
||||
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
img_rgb = cv2.resize(img_rgb, (300, 300), cv2.INTER_AREA)
|
||||
img_rgb = img_rgb.reshape([1, 300, 300, 3])
|
||||
self.interpreter.set_tensor(self.input_details[0]['index'], img_rgb)
|
||||
self.interpreter.invoke()
|
||||
output_dict = self.get_output_dict(nms, iou_thresh, score_thresh)
|
||||
return output_dict
|
||||
|
||||
|
||||
class ObjectDetector(Algorithm):
|
||||
""" Detects objects """
|
||||
|
||||
def __init__(self):
|
||||
""" Init some values and set seed point to None """
|
||||
self.objects = dict()
|
||||
self.detection_image = None
|
||||
self.lock = threading.Lock()
|
||||
self.thread = threading.Thread(target=self._detect, args=[], daemon=True)
|
||||
self.thread.start()
|
||||
|
||||
def process(self, img):
|
||||
"""
|
||||
Tries to segment a region around the seed point and calculates a new seed point by finding the segments center
|
||||
"""
|
||||
with self.lock:
|
||||
if self.detection_image is None:
|
||||
self.detection_image = np.copy(img)
|
||||
with self.lock:
|
||||
objects = copy(self.objects)
|
||||
h, w, c = img.shape
|
||||
if "detection_classes_name" in objects.keys():
|
||||
for i, cls in enumerate(objects["detection_classes_name"]):
|
||||
box = objects["detection_boxes"][i]
|
||||
score = objects["detection_scores"][i]
|
||||
name = cls["name"]
|
||||
y1, x1, y2, x2 = round(box[0] * h), round(box[1] * w), round(box[2] * h), round(box[3] * w)
|
||||
img = cv2.rectangle(img, (x1, y1), (x2, y2), color=(0, 0, 0), thickness=2)
|
||||
img = cv2.putText(img, "%s: %.2f" % (name, score), (x1, y1), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 0))
|
||||
|
||||
return img
|
||||
|
||||
def _detect(self):
|
||||
detector = Detector()
|
||||
while True:
|
||||
with self.lock:
|
||||
img = self.detection_image
|
||||
if img is None:
|
||||
sleep(.033)
|
||||
continue
|
||||
objects = detector.make_inference(img)
|
||||
with self.lock:
|
||||
self.objects = objects
|
||||
self.detection_image = None
|
||||
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
""" Selects a new seed point"""
|
||||
if event == cv2.EVENT_LBUTTONUP:
|
||||
pass
|
||||
|
||||
71
CV-App/algorithms/segmentation_tracker.py
Normal file
71
CV-App/algorithms/segmentation_tracker.py
Normal file
@@ -0,0 +1,71 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class SegmentationTracker(Algorithm):
|
||||
""" Tracks a point by re-identify a suitable segmentation """
|
||||
|
||||
def __init__(self):
|
||||
""" Init some values and set seed point to None """
|
||||
self.pos = None
|
||||
self.distance_threshold = 80
|
||||
self.reference_pixel = None
|
||||
|
||||
def process(self, img):
|
||||
"""
|
||||
Tries to segment a region around the seed point and calculates a new seed point by finding the segments center
|
||||
"""
|
||||
if self.pos is None:
|
||||
result = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
result = np.stack([result, result, result], axis=2)
|
||||
return result
|
||||
h, w, c = img.shape
|
||||
|
||||
if self.reference_pixel is None:
|
||||
self.reference_pixel = np.copy(img[self.pos[1], self.pos[0]])
|
||||
pixel_low, pixel_high = \
|
||||
np.maximum(0, self.reference_pixel-self.distance_threshold),\
|
||||
np.minimum(255, self.reference_pixel+self.distance_threshold)
|
||||
binary = cv2.inRange(img, pixel_low, pixel_high)
|
||||
|
||||
element = np.ones((5, 5), dtype=np.uint8)
|
||||
binary = cv2.erode(binary, element)
|
||||
binary = cv2.dilate(binary, element)
|
||||
sure_background = binary
|
||||
sure_foreground = np.zeros_like(sure_background)
|
||||
x, y = max(2, self.pos[0]), max(2, self.pos[1])
|
||||
sure_foreground[y-2:y+2, x-5:x+2] = 1
|
||||
unknown = np.maximum(0, sure_background - sure_foreground)
|
||||
|
||||
ret, markers = cv2.connectedComponents(sure_foreground)
|
||||
# Add one to all labels so that sure background is not 0, but 1
|
||||
markers = markers + 1
|
||||
# Now, mark the region of unknown with zero
|
||||
markers[unknown == 255] = 0
|
||||
markers = cv2.watershed(img, markers)
|
||||
|
||||
try:
|
||||
contours, hierarchy = cv2.findContours(((markers == 2) * 1).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
||||
c = contours[0]
|
||||
M = cv2.moments(c)
|
||||
cX = int(M["m10"] / M["m00"])
|
||||
cY = int(M["m01"] / M["m00"])
|
||||
self.pos = (min(cX, w-1), min(cY, h-1))
|
||||
except:
|
||||
pass
|
||||
|
||||
result = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
result = np.stack([result, result, result], axis=2)
|
||||
random_noise = np.random.randint(0, 255, (h, w), dtype=np.uint8)
|
||||
random_noise = cv2.applyColorMap(random_noise, colormap=cv2.COLORMAP_INFERNO)
|
||||
result[markers == 2] = random_noise[markers == 2]
|
||||
return result
|
||||
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
""" Selects a new seed point"""
|
||||
if event == cv2.EVENT_LBUTTONUP:
|
||||
self.pos = (x, y)
|
||||
self.reference_pixel = None
|
||||
|
||||
131
CV-App/algorithms/silhouette_ghost.py
Normal file
131
CV-App/algorithms/silhouette_ghost.py
Normal file
@@ -0,0 +1,131 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
from copy import deepcopy
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class SilhouetteGhost (Algorithm):
|
||||
|
||||
""" init function """
|
||||
def __init__(self):
|
||||
self.image_count = 0
|
||||
self.background = None
|
||||
self.background_update_rate = 0.2
|
||||
self.threshold = 15
|
||||
|
||||
""" Processes the input image"""
|
||||
def process(self, img):
|
||||
|
||||
""" 2.1 Vorverarbeitung """
|
||||
""" 2.1.1 Rauschreduktion """
|
||||
plotNoise = False # Schaltet die Rauschvisualisierung ein
|
||||
if plotNoise:
|
||||
self._plotNoise(img, "Rauschen vor Korrektur")
|
||||
img = self._211_Rauschreduktion(img)
|
||||
if plotNoise:
|
||||
self._plotNoise(img, "Rauschen nach Korrektur")
|
||||
""" 2.1.2 HistogrammSpreizung """
|
||||
img = self._212_HistogrammSpreizung(img)
|
||||
|
||||
|
||||
""" 2.2 Vordergrund-Detektion """
|
||||
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
h, w = img_gray.shape
|
||||
resized_img_gray = cv2.resize(img_gray, (int(w/2), int(h/2)), interpolation=cv2.INTER_NEAREST)
|
||||
blurred_img = cv2.GaussianBlur(resized_img_gray, (15, 15), 0)
|
||||
|
||||
if self.background is None:
|
||||
self.background = blurred_img
|
||||
self.background = (1 - self.background_update_rate) * self.background + self.background_update_rate * blurred_img
|
||||
|
||||
diff = blurred_img - self.background
|
||||
diff_abs = np.abs(diff)
|
||||
binary_image = diff_abs > self.threshold
|
||||
|
||||
""" 2.2.1 Opening und Closing """
|
||||
binary_image = self._221_OpeningClosing(binary_image)
|
||||
|
||||
""" 2.3 Canny-Edge und Bildmodifizierung """
|
||||
canny_edges = self._231_CannyEdge(resized_img_gray)
|
||||
|
||||
canny_edges = canny_edges * binary_image
|
||||
canny_edges = cv2.resize(canny_edges, (int(w), int(h)), interpolation=cv2.INTER_NEAREST)
|
||||
|
||||
return canny_edges
|
||||
|
||||
""" Reacts on mouse callbacks """
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
if event == cv2.EVENT_LBUTTONUP:
|
||||
print("A Mouse click happend! at position", x, y)
|
||||
|
||||
|
||||
def _plotNoise(self, img, name:str):
|
||||
height, width = np.array(img.shape[:2])
|
||||
centY = (height / 2).astype(int)
|
||||
centX = (width / 2).astype(int)
|
||||
|
||||
cutOut = 5
|
||||
tmpImg = deepcopy(img)
|
||||
tmpImg = tmpImg[centY - cutOut:centY + cutOut, centX - cutOut:centX + cutOut, :]
|
||||
|
||||
outSize = 500
|
||||
tmpImg = cv2.resize(tmpImg, (outSize, outSize), interpolation=cv2.INTER_NEAREST)
|
||||
|
||||
cv2.imshow(name, tmpImg)
|
||||
cv2.waitKey(1)
|
||||
|
||||
def _211_Rauschreduktion(self, img):
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.1.1 (Rauschunterdrückung)
|
||||
- Implementierung Mittelwertbildung über N Frames
|
||||
"""
|
||||
|
||||
|
||||
return img
|
||||
|
||||
def _212_HistogrammSpreizung(self, img):
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.1.2 (Histogrammspreizung)
|
||||
- Transformation HSV
|
||||
- Histogrammspreizung berechnen
|
||||
- Transformation BGR
|
||||
"""
|
||||
|
||||
return img
|
||||
|
||||
def _221_OpeningClosing(self, binary_image):
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.2.1 (Opening and Closing)
|
||||
- Implementieren Sie das Closing
|
||||
- Speichern Sie das aktuelle Bild vor und nach der Funktion beim Mausklick
|
||||
"""
|
||||
|
||||
return binary_image
|
||||
|
||||
def _231_CannyEdge (self, img_gray):
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.3.1 (Manuelle Canny Edge Implementierung)
|
||||
- Glättung
|
||||
- Gradienten berechnen
|
||||
- Nicht-Maximum Unterdrückung
|
||||
- Hysterese Unterdrückung
|
||||
"""
|
||||
|
||||
""" 1. Glättung """
|
||||
|
||||
|
||||
""" 2. Gradienten berechnen """
|
||||
|
||||
|
||||
""" 3. Nicht-Maximum Unterdrückung """
|
||||
|
||||
|
||||
""" 4. Hysterese Unterdrückung """
|
||||
#parameter:
|
||||
thresh1 = 50
|
||||
thresh2 = 100
|
||||
|
||||
|
||||
return np.ones_like(img_gray) * 255 # hier eigenes Edge-Bild ausgeben
|
||||
21
CV-App/algorithms/spin.py
Normal file
21
CV-App/algorithms/spin.py
Normal file
@@ -0,0 +1,21 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class Spin(Algorithm):
|
||||
""" Rotates an image """
|
||||
|
||||
def __init__(self):
|
||||
self.current_angle = 0 # between 0 and 2 pi
|
||||
self.anlge_per_image = 360 / 100
|
||||
|
||||
def process(self, img):
|
||||
self.current_angle = (self.current_angle + self.anlge_per_image) % 360
|
||||
w, h = img.shape[1], img.shape[0]
|
||||
image_center = (w / 2, h / 2)
|
||||
rot_mat = cv2.getRotationMatrix2D(image_center, self.current_angle, 1.0)
|
||||
img = cv2.warpAffine(img, rot_mat, (w, h), flags=cv2.INTER_LINEAR)
|
||||
return img
|
||||
|
||||
30
CV-App/algorithms/tutorial_algorithm.py
Normal file
30
CV-App/algorithms/tutorial_algorithm.py
Normal file
@@ -0,0 +1,30 @@
|
||||
import cv2
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class TutorialAlgorithm(Algorithm):
|
||||
""" Writes the RGB values of an pixel to the output image """
|
||||
|
||||
def __init__(self):
|
||||
""" Init reference point with None value """
|
||||
|
||||
def process(self, img):
|
||||
"""
|
||||
Reads out the RGB values of the reference point and writes it to the output image
|
||||
"""
|
||||
if self.pos is not None:
|
||||
pixel = img[self.pos[1], self.pos[0]]
|
||||
text = "x:%s y:%s R:%s G:%s B:%s" % (self.pos[0], self.pos[1], pixel[2], pixel[1], pixel[0])
|
||||
else:
|
||||
text = "Click on the image!"
|
||||
font, org, font_scale, color, thickness = cv2.FONT_HERSHEY_SIMPLEX, (50, 50), 1, (0, 0, 0), 2
|
||||
image = cv2.putText(img, text, org, font, font_scale, color, thickness, cv2.LINE_AA)
|
||||
|
||||
return image
|
||||
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
""" Selects a new reference position"""
|
||||
if event == cv2.EVENT_LBUTTONUP:
|
||||
# Store x and y to the member value self.pos
|
||||
pass
|
||||
31
CV-App/algorithms/tutorial_algorithm_solution.py
Normal file
31
CV-App/algorithms/tutorial_algorithm_solution.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import cv2
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class TutorialAlgorithm(Algorithm):
|
||||
""" Writes the RGB values of an pixel to the output image """
|
||||
|
||||
def __init__(self):
|
||||
""" Init reference point with None value """
|
||||
self.pos = None
|
||||
|
||||
def process(self, img):
|
||||
"""
|
||||
Reads out the RGB values of the reference point and writes it to the output image
|
||||
"""
|
||||
if self.pos is not None:
|
||||
pixel = img[self.pos[1], self.pos[0]]
|
||||
text = "x:%s y:%s R:%s G:%s B:%s" % (self.pos[0], self.pos[1], pixel[2], pixel[1], pixel[0])
|
||||
else:
|
||||
text = "Click on the image!"
|
||||
font, org, font_scale, color, thickness = cv2.FONT_HERSHEY_SIMPLEX, (50, 50), 1, (0, 0, 0), 2
|
||||
image = cv2.putText(img, text, org, font, font_scale, color, thickness, cv2.LINE_AA)
|
||||
|
||||
return image
|
||||
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
""" Selects a new reference position"""
|
||||
if event == cv2.EVENT_LBUTTONUP:
|
||||
self.pos = (x, y)
|
||||
|
||||
31
CV-App/algorithms/white_balancing.py
Normal file
31
CV-App/algorithms/white_balancing.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class WhiteBalancing(Algorithm):
|
||||
""" White Balancing """
|
||||
|
||||
def __init__(self):
|
||||
""" Define Reference RGB values to (255, 255, 255) """
|
||||
self.max_b, self.max_g, self.max_r = 255, 255, 255
|
||||
self.last_image = None
|
||||
|
||||
def process(self, img):
|
||||
""" Performs white balancing based on the reference RGB values """
|
||||
self.last_image = img
|
||||
img = img.astype(np.float32)
|
||||
img[:, :, 0] = np.clip(img[:, :, 0], 0, self.max_b) * 255 / max(1, self.max_b)
|
||||
img[:, :, 1] = np.clip(img[:, :, 1], 0, self.max_g) * 255 / max(1, self.max_g)
|
||||
img[:, :, 2] = np.clip(img[:, :, 2], 0, self.max_r) * 255 / max(1, self.max_r)
|
||||
img = img.astype(np.uint8)
|
||||
return img
|
||||
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
""" Selects new reference RGB values, if left mouse button is clicked and self.last_image is defined """
|
||||
if self.last_image is None:
|
||||
return
|
||||
if event == cv2.EVENT_LBUTTONUP:
|
||||
self.max_b, self.max_g, self.max_r = \
|
||||
self.last_image[y, x, 0], self.last_image[y, x, 1], self.last_image[y, x, 2]
|
||||
Reference in New Issue
Block a user