Initial commit with project files
This commit is contained in:
144
CV-App/README.md
Normal file
144
CV-App/README.md
Normal file
@@ -0,0 +1,144 @@
|
||||
# CV-Application
|
||||
Original | Geom. Transformation | Chrominanz
|
||||
:-------------------------:|:-------------------------:|:-------------------------:
|
||||
 |  | 
|
||||
|
||||
Die CV-App ist eine Applikation, mit der eine Bildverarbeitungs-Pipeline generiert werden kann. Die Pipeline ließt eine
|
||||
vorhandene Webcam aus. Der Inhalt dieses Videostreams wird dann durch CV-Algorithmen be- und/oder verarbeitet und angezeigt.
|
||||
Optional kann der so erzeugte Videostream an eine virtuelle Kamera weitergeleitet werden. Diese virtuelle Kamera kann
|
||||
dann von anderen Programmen (z.B. für Videokonferenzen) wie eine normale Webcam ausgelesen werden.
|
||||
|
||||
Zwei einfache Algorithmen wie die geometrische Transformation oder die Entfernung der Luminanz sind in oberen
|
||||
Abbildungen dargestellt.
|
||||
|
||||
|
||||
## Anleitung
|
||||
### Treiber virtuelle Kamera
|
||||
Die Grundfunktion der CV-App ist einsatzbereit, sobald dieses Repository erfolgreich installiert ist. Sie können Ihre
|
||||
Webcam einlesen und CV-Algorithmen auf den Videostream anwenden.
|
||||
Für die Nutzung der virtuellen Kamera ist ein zusätzlicher Treiber notwendig. Je nachdem welches Betriebssystem Sie
|
||||
nutzen, kann dieser variieren. Die nötige Treiber Installation finden Sie unter
|
||||
[https://github.com/letmaik/pyvirtualcam](https://github.com/letmaik/pyvirtualcam).
|
||||
|
||||
### Bedienung des Programms
|
||||
Führen Sie das Skript `main.py` aus diesem Verzeichnis mit dem Befehl
|
||||
|
||||
```bash
|
||||
python main.py --camera=0 --mode=virtual_cam --video=PFAD_ZU_EINEM_VIDEO
|
||||
```
|
||||
|
||||
im Terminal aus. Dabei stehen Ihnen einige optionale Parameter zur Verfügung. Wenn Sie die Parameter nicht angeben,
|
||||
werden die Default-Werte verwendet. Die Bedeutung der Parameter sowie die Default-Werte finden Sie in der folgenden
|
||||
Tabelle.
|
||||
|
||||
**Parameter** | **Default-Wert** | **Beschreibung**
|
||||
:---:|:---:|:---:|
|
||||
--camera| 0 | OpenCV ID der Kamera. Wenn -1 angegeben ist, wird anstelle einer Kamera ein Video in Dauserschleife gespielt.
|
||||
--mode| *virtual_cam* | Entweder *virtual_cam* (mit virtueller Kamera und Bildschirmausgabe) oder *screen* (nur Bildschirmausgabe)
|
||||
--video | - | Gibt den Pfad zum Video an, wenn --camera=-1 ist
|
||||
|
||||
**Hinweise:**
|
||||
- Sollten Sie keine Kamera zur Verfügung haben, können Sie *--camera=-1* wählen, um ein Video zu verwenden
|
||||
- Die Default-Werte sind in `main.py` definiert und können dort angepasst werden
|
||||
|
||||
Nachdem Sie das Programm erfolgreich gestartet haben, sollten Sie das Bild der Kamera in einem neu geöffneten Fenster
|
||||
sehen. Zu Beginn der Programmausführung wird kein CV-Algorithmus auf das Bild angewendet (Eingangsbild=Ausgangsbild).
|
||||
Sie können verschiedene Funktionen bzw. Algorithmen durch betätigen verschiedener Tasten aktivieren. Als Standard sind
|
||||
einige Funktionen auf den Tasten *1* bis *10* vorprogrammiert. Es ist ebenfalls möglich, mit Maus-Aktionen mit der
|
||||
Pipeline zu interagieren.
|
||||
|
||||
Mit den Tasten **f** und **e** können Sie den Auto**f**okus bzw. Auto**e**xposure aktivieren oder deaktivieren.
|
||||
|
||||
**Hinweise:**
|
||||
- Sie können nur mit der App interagieren, wenn das Programmfenster im Vordergrund ist!
|
||||
- Autofokus und Autoexposure sind für viele Webcams nicht supported!
|
||||
|
||||
## Eigene CV Algorithmen
|
||||
Für die Implementierung eigener Algorithmen sind nur Dateien in dem Unterverzeichnis *algorithms* notwendig. Öffnen
|
||||
Sie sich in das Verzeichnis und lesen die folgenden Abschnitte. Nachdem Sie die Abschnitte gelesen haben können Sie die Übungsaufgabe
|
||||
in der Datei [exercise.md](./exercise.md) bearbeiten.
|
||||
|
||||
### Eigenen "Algorithm" erstellen
|
||||
Sie können einen eigenen Algorithmus erstellen, in dem Sie ein neues Skript in dem Ordner *algorithms* erstellen. Das
|
||||
folgende Skript *algorithms/your_algorithm.py* zeigt einen beispielhaften Algorithmus, der einen Weißabgleich implementiert.
|
||||
|
||||
```python
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class YourAlgorithm(Algorithm):
|
||||
""" The implementation of your algorithm """
|
||||
|
||||
def __init__(self):
|
||||
""" Inititation of your algorithm. You can store member variables here! """
|
||||
self.max_b, self.max_g, self.max_r = 255, 255, 255
|
||||
self.last_image = None
|
||||
|
||||
def process(self, img):
|
||||
""" Here the input image (img) is processed and returned """
|
||||
self.last_image = img
|
||||
img = img.astype(np.float32)
|
||||
img[:, :, 0] = np.clip(img[:, :, 0], 0, self.max_b) * 255 / max(1, self.max_b)
|
||||
img[:, :, 1] = np.clip(img[:, :, 1], 0, self.max_g) * 255 / max(1, self.max_g)
|
||||
img[:, :, 2] = np.clip(img[:, :, 2], 0, self.max_r) * 255 / max(1, self.max_r)
|
||||
img = img.astype(np.uint8)
|
||||
return img
|
||||
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
""" The mouse callback react on mouse events """
|
||||
if self.last_image is None:
|
||||
return
|
||||
if event == cv2.EVENT_LBUTTONUP:
|
||||
self.max_b, self.max_g, self.max_r = \
|
||||
self.last_image[y, x, 0], self.last_image[y, x, 1], self.last_image[y, x, 2]
|
||||
```
|
||||
|
||||
Die Funktion *\_\_init\_\_(self)* wird bei der Erstellung des Algorithmus aufgerufen. Sie können dort Variablen definieren,
|
||||
die während der gesamten Laufzeit gespeichert bleiben. So können Sie z.B. Daten zwischen der Eingabe mehrerer Bilder
|
||||
speichern.
|
||||
Die Funktion *process.py(self, img)* verarbeitet jedes ausgelesene Bild. Am Ende der Funktion **muss** ein Bild mit selber Höhe und
|
||||
Breite ausgegben werden.
|
||||
Die Funktion *mouse_callback(self, event, x, y, flags, param)* wird bei Maus-Events ausgeführt. Für weitere Information
|
||||
lesen Sie z.B. [hier](https://techtutorialsx.com/2020/12/08/python-opencv-mouse-events/).
|
||||
|
||||
In dem Ordner *algorithms* sind mehrere Beispiele für Algorithmen gegeben.
|
||||
|
||||
### Verlinken des eigenen Algorithmus zu einer Taste
|
||||
Ihr Algorithmus *YourAlgorithm* kann nun zu einer Taste verlinkt werden. Der folgende Code entspricht in etwa dem Inhalt
|
||||
der Datei *\_\_init\_\_.py*. Ihr Algorithmus ist in dem Beispiel an die Taste *3* verlinkt. Um weitere Algorithmen zu
|
||||
verlinken müssen Sie lediglich einen weiteren Import und einen Eintrag in das algorithmus-dictionary hinzufügen.
|
||||
|
||||
```python
|
||||
class Algorithm:
|
||||
|
||||
def process(self, img):
|
||||
return img
|
||||
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
return
|
||||
|
||||
from .image_to_gray import ImageToGray
|
||||
from .image_to_hue import ImageToHue
|
||||
from .your_algorithm import YourAlgorithm
|
||||
|
||||
algorithms = dict()
|
||||
algorithms["0"] = Algorithm
|
||||
algorithms["1"] = ImageToGray
|
||||
algorithms["2"] = ImageToHue
|
||||
algorithms["3"] = YourAlgorithm
|
||||
```
|
||||
|
||||
## Anforderungen
|
||||
Hardware:
|
||||
- Webcam, die von OpenCV eingelesen werden kann
|
||||
|
||||
Getestet mit Python Versionen:
|
||||
- 3.6
|
||||
|
||||
Getestet auf Betriebssystemen:
|
||||
- Windows 10
|
||||
- OpenSuse (pyvirtualcam funktioniert nicht!)
|
||||
|
||||
38
CV-App/algorithms/__init__.py
Normal file
38
CV-App/algorithms/__init__.py
Normal file
@@ -0,0 +1,38 @@
|
||||
|
||||
|
||||
class Algorithm:
|
||||
""" An abstract class to create custom algorithms """
|
||||
def process(self, img):
|
||||
""" Processes the input image"""
|
||||
return img
|
||||
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
""" Reacts on mouse callbacks """
|
||||
return
|
||||
|
||||
|
||||
''' Import algorithms to use'''
|
||||
from .image_to_gray import ImageToGray
|
||||
from .image_to_hue import ImageToHue
|
||||
from .motion_detector import MotionDetector
|
||||
from .white_balancing import WhiteBalancing
|
||||
from .spin import Spin
|
||||
from .segmentation_tracker import SegmentationTracker
|
||||
#from .object_detection import ObjectDetector
|
||||
#from .bottle_detection import BottleDetector
|
||||
from .invis_cloak import InvisCloak
|
||||
from .canny_edges import CannyEdgeDetector
|
||||
|
||||
''' Link Algorithms to keys '''
|
||||
algorithms = dict()
|
||||
algorithms["0"] = Algorithm
|
||||
algorithms["1"] = ImageToGray
|
||||
algorithms["2"] = ImageToHue
|
||||
algorithms["3"] = MotionDetector
|
||||
algorithms["4"] = WhiteBalancing
|
||||
algorithms["5"] = Spin
|
||||
algorithms["6"] = SegmentationTracker
|
||||
algorithms["7"] = InvisCloak
|
||||
#algorithms["7"] = ObjectDetector
|
||||
#algorithms["8"] = BottleDetector
|
||||
algorithms["9"] = CannyEdgeDetector
|
||||
69
CV-App/algorithms/bottle_detection.py
Normal file
69
CV-App/algorithms/bottle_detection.py
Normal file
@@ -0,0 +1,69 @@
|
||||
"""
|
||||
Many thanks to https://github.com/vardanagarwal/Proctoring-AI/blob/master/coco models/tflite mobnetv1 ssd
|
||||
"""
|
||||
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import threading
|
||||
from copy import copy
|
||||
from time import sleep
|
||||
|
||||
from . object_detection import Detector
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class BottleDetector(Algorithm):
|
||||
""" Detects objects """
|
||||
|
||||
def __init__(self):
|
||||
""" Init some values and set seed point to None """
|
||||
self.objects = dict()
|
||||
self.detection_image = None
|
||||
self.lock = threading.Lock()
|
||||
self.thread = threading.Thread(target=self._detect, args=[], daemon=True)
|
||||
self.thread.start()
|
||||
|
||||
def process(self, img):
|
||||
"""
|
||||
Tries to segment a region around the seed point and calculates a new seed point by finding the segments center
|
||||
"""
|
||||
with self.lock:
|
||||
if self.detection_image is None:
|
||||
self.detection_image = np.copy(img)
|
||||
with self.lock:
|
||||
objects = copy(self.objects)
|
||||
h, w, c = img.shape
|
||||
|
||||
if "detection_classes_name" in objects.keys():
|
||||
for i, cls in enumerate(objects["detection_classes_name"]):
|
||||
name = cls["name"]
|
||||
if name in ["bottle", "cup"]:
|
||||
box = objects["detection_boxes"][i]
|
||||
score = objects["detection_scores"][i]
|
||||
y1, x1, y2, x2 = \
|
||||
max(round(box[0] * h) - 20, 0), round(box[1] * w) - 20 ,\
|
||||
max(round(box[2] * h) + 20, 0), round(box[3] * w) + 20
|
||||
if img[y1:y2, x1:x2].size > 0:
|
||||
img[y1:y2, x1:x2] = cv2.medianBlur(img[y1:y2, x1:x2], 31)
|
||||
|
||||
return img.astype(np.uint8)
|
||||
|
||||
def _detect(self):
|
||||
detector = Detector()
|
||||
while True:
|
||||
with self.lock:
|
||||
img = self.detection_image
|
||||
if img is None:
|
||||
sleep(.033)
|
||||
continue
|
||||
objects = detector.make_inference(img, score_thresh=0.1)
|
||||
with self.lock:
|
||||
self.objects = objects
|
||||
self.detection_image = None
|
||||
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
""" Selects a new seed point"""
|
||||
if event == cv2.EVENT_LBUTTONUP:
|
||||
pass
|
||||
|
||||
40
CV-App/algorithms/canny_edges.py
Normal file
40
CV-App/algorithms/canny_edges.py
Normal file
@@ -0,0 +1,40 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class CannyEdgeDetector(Algorithm):
|
||||
""" Converts a BGR image to grayscale"""
|
||||
def __init__(self):
|
||||
self.image_count = 0
|
||||
self.background = None
|
||||
self.background_update_rate = 0.2
|
||||
self.threshold = 15
|
||||
|
||||
def process(self, img):
|
||||
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
h, w = img_gray.shape
|
||||
resized_image = cv2.resize(img_gray, (int(w/2), int(h/2)), interpolation=cv2.INTER_NEAREST)
|
||||
blurred_img = cv2.GaussianBlur(resized_image, (15, 15), 0)
|
||||
|
||||
if self.background is None:
|
||||
self.background = blurred_img
|
||||
self.background = (1 - self.background_update_rate) * self.background + self.background_update_rate * blurred_img
|
||||
|
||||
diff = blurred_img - self.background
|
||||
diff_abs = np.abs(diff)
|
||||
binary_image = diff_abs > self.threshold
|
||||
|
||||
canny_edges = canny(resized_image, 50, 100)
|
||||
|
||||
canny_edges = canny_edges * binary_image
|
||||
canny_edges = cv2.resize(canny_edges, (int(w), int(h)), interpolation=cv2.INTER_NEAREST)
|
||||
|
||||
return canny_edges
|
||||
|
||||
|
||||
def canny(img, thresh1, thresh2):
|
||||
img = cv2.Canny(img, thresh1, thresh2)
|
||||
return img
|
||||
10
CV-App/algorithms/image_to_gray.py
Normal file
10
CV-App/algorithms/image_to_gray.py
Normal file
@@ -0,0 +1,10 @@
|
||||
import cv2
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class ImageToGray(Algorithm):
|
||||
""" Converts a BGR image to grayscale"""
|
||||
def process(self, img):
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
return img
|
||||
13
CV-App/algorithms/image_to_hue.py
Normal file
13
CV-App/algorithms/image_to_hue.py
Normal file
@@ -0,0 +1,13 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class ImageToHue(Algorithm):
|
||||
""" Normalizes a BGR image with color information"""
|
||||
def process(self, img):
|
||||
channel_sum = np.sum(img.astype(np.float32), axis=2, keepdims=True)
|
||||
img_normalized = img.astype(np.float32) * 255 / channel_sum
|
||||
img_normalized = img_normalized.astype(np.uint8())
|
||||
return img_normalized
|
||||
118
CV-App/algorithms/invis_cloak.py
Normal file
118
CV-App/algorithms/invis_cloak.py
Normal file
@@ -0,0 +1,118 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
from copy import deepcopy
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class InvisCloak (Algorithm):
|
||||
|
||||
""" init function """
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
""" Processes the input image"""
|
||||
def process(self, img):
|
||||
|
||||
""" 2.1 Vorverarbeitung """
|
||||
""" 2.1.1 Rauschreduktion """
|
||||
plotNoise = False # Schaltet die Rauschvisualisierung ein
|
||||
if plotNoise:
|
||||
self._plotNoise(img, "Rauschen vor Korrektur")
|
||||
img = self._211_Rauschreduktion(img)
|
||||
if plotNoise:
|
||||
self._plotNoise(img, "Rauschen nach Korrektur")
|
||||
""" 2.1.2 HistogrammSpreizung """
|
||||
img = self._212_HistogrammSpreizung(img)
|
||||
|
||||
|
||||
""" 2.2 Farbanalyse """
|
||||
""" 2.2.1 RGB """
|
||||
self._221_RGB(img)
|
||||
""" 2.2.2 HSV """
|
||||
self._222_HSV(img)
|
||||
|
||||
|
||||
""" 2.3 Segmentierung und Bildmdifikation """
|
||||
img = self._23_SegmentUndBildmodifizierung(img)
|
||||
|
||||
return img
|
||||
|
||||
""" Reacts on mouse callbacks """
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
if event == cv2.EVENT_LBUTTONUP:
|
||||
print("A Mouse click happend! at position", x, y)
|
||||
|
||||
def _plotNoise(self, img, name:str):
|
||||
height, width = np.array(img.shape[:2])
|
||||
centY = (height / 2).astype(int)
|
||||
centX = (width / 2).astype(int)
|
||||
|
||||
cutOut = 5
|
||||
tmpImg = deepcopy(img)
|
||||
tmpImg = tmpImg[centY - cutOut:centY + cutOut, centX - cutOut:centX + cutOut, :]
|
||||
|
||||
outSize = 500
|
||||
tmpImg = cv2.resize(tmpImg, (outSize, outSize), interpolation=cv2.INTER_NEAREST)
|
||||
|
||||
cv2.imshow(name, tmpImg)
|
||||
cv2.waitKey(1)
|
||||
|
||||
def _211_Rauschreduktion(self, img):
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.1.1 (Rauschunterdrückung)
|
||||
- Implementierung Mittelwertbildung über N Frames
|
||||
"""
|
||||
|
||||
|
||||
return img
|
||||
|
||||
def _212_HistogrammSpreizung(self, img):
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.1.2 (Histogrammspreizung)
|
||||
- Transformation HSV
|
||||
- Histogrammspreizung berechnen
|
||||
- Transformation BGR
|
||||
"""
|
||||
|
||||
return img
|
||||
|
||||
def _221_RGB(self, img):
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.2.1 (RGB)
|
||||
- Histogrammberechnung und Analyse
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
def _222_HSV(self, img):
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.2.2 (HSV)
|
||||
- Histogrammberechnung und Analyse im HSV-Raum
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
def _23_SegmentUndBildmodifizierung (self, img):
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.3.1 (StatischesSchwellwertverfahren)
|
||||
- Binärmaske erstellen
|
||||
"""
|
||||
|
||||
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.3.2 (Binärmaske)
|
||||
- Binärmaske optimieren mit Opening/Closing
|
||||
- Wahl größte zusammenhängende Region
|
||||
"""
|
||||
|
||||
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.3.1 (Bildmodifizerung)
|
||||
- Hintergrund mit Mausklick definieren
|
||||
- Ersetzen des Hintergrundes
|
||||
"""
|
||||
|
||||
|
||||
return img
|
||||
45
CV-App/algorithms/motion_detector.py
Normal file
45
CV-App/algorithms/motion_detector.py
Normal file
@@ -0,0 +1,45 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class MotionDetector(Algorithm):
|
||||
""" Converts a BGR image to grayscale"""
|
||||
def __init__(self):
|
||||
self.image_count = 0
|
||||
self.background = None
|
||||
self.motion_field = None
|
||||
self.background_update_rate = 0.5
|
||||
self.motion_update_rate = 0.3
|
||||
self.threshold = 50
|
||||
|
||||
def process(self, img):
|
||||
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
h, w = img_gray.shape
|
||||
blurred_img = cv2.resize(img_gray, (int(w/2), int(h/2)), interpolation=cv2.INTER_NEAREST)
|
||||
blurred_img = cv2.GaussianBlur(blurred_img, (15, 15), 0)
|
||||
|
||||
if self.background is None:
|
||||
self.background = blurred_img
|
||||
self.motion_field = np.zeros_like(blurred_img)
|
||||
|
||||
self.background = (1 - self.background_update_rate) * self.background + self.background_update_rate * blurred_img
|
||||
|
||||
diff = blurred_img - self.background
|
||||
diff_abs = np.abs(diff)
|
||||
diff_rel = np.clip(diff_abs, 0, self.threshold) / self.threshold
|
||||
self.motion_field = (1 - self.motion_update_rate) * self.motion_field + self.motion_update_rate * diff_rel
|
||||
|
||||
motion_field = cv2.resize(self.motion_field, (w, h), interpolation=cv2.INTER_NEAREST)
|
||||
motion_field = np.expand_dims(motion_field, 2)
|
||||
|
||||
colormap = cv2.applyColorMap((motion_field * 255).astype(np.uint8), cv2.COLORMAP_HOT)
|
||||
img_gray = np.stack([img_gray, img_gray, img_gray], axis=2)
|
||||
final_image = 0.5 * img_gray * (1 - motion_field) + colormap * motion_field
|
||||
final_image = final_image.astype(np.uint8)
|
||||
|
||||
self.image_count += 1
|
||||
|
||||
return final_image
|
||||
179
CV-App/algorithms/object_detection.py
Normal file
179
CV-App/algorithms/object_detection.py
Normal file
@@ -0,0 +1,179 @@
|
||||
"""
|
||||
Many thanks to https://github.com/vardanagarwal/Proctoring-AI/blob/master/coco models/tflite mobnetv1 ssd
|
||||
"""
|
||||
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import multiprocessing
|
||||
import threading
|
||||
import os
|
||||
from copy import copy
|
||||
from time import sleep
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
""" Check if neural network accelerator is existing """
|
||||
try_edgetpu = True
|
||||
try:
|
||||
if not try_edgetpu:
|
||||
raise Exception()
|
||||
from pycoral.adapters import common
|
||||
from pycoral.adapters import detect
|
||||
from pycoral.utils.dataset import read_label_file
|
||||
from pycoral.utils.edgetpu import make_interpreter, list_edge_tpus
|
||||
if len(list_edge_tpus()) == 0:
|
||||
raise Exception()
|
||||
engine = "edgetpu"
|
||||
except Exception as e:
|
||||
import tensorflow as tf
|
||||
engine = "tflite"
|
||||
|
||||
|
||||
class Detector:
|
||||
def __init__(self):
|
||||
self.category_index = self.create_category_index()
|
||||
if engine == "tflite":
|
||||
self.num_threads = int(multiprocessing.cpu_count())
|
||||
print("Self using %s threads for object detection" % self.num_threads)
|
||||
self.interpreter = tf.lite.Interpreter(
|
||||
model_path="data" + os.sep + "ssd_mobilenet_v2_coco_quant_postprocess.tflite", num_threads=self.num_threads
|
||||
)
|
||||
self.interpreter.allocate_tensors()
|
||||
# Get input and output tensors.
|
||||
self.input_details = self.interpreter.get_input_details()
|
||||
self.output_details = self.interpreter.get_output_details()
|
||||
elif engine == "edgetpu":
|
||||
print("Running with edge tpu")
|
||||
self.interpreter = make_interpreter("data" + os.sep + "ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite")
|
||||
self.interpreter.allocate_tensors()
|
||||
# Get input and output tensors.
|
||||
self.input_details = self.interpreter.get_input_details()
|
||||
self.output_details = self.interpreter.get_output_details()
|
||||
|
||||
def create_category_index(self, label_path='data' + os.sep + 'labelmap.txt'):
|
||||
f = open(label_path)
|
||||
category_index = {}
|
||||
for i, val in enumerate(f):
|
||||
if i != 0:
|
||||
val = val[:-1]
|
||||
category_index.update({(i - 1): {'id': (i - 1), 'name': val}})
|
||||
f.close()
|
||||
return category_index
|
||||
|
||||
def get_output_dict(self, nms=True, iou_thresh=0.5, score_thresh=0.5):
|
||||
output_dict = {
|
||||
'detection_boxes': self.interpreter.get_tensor(self.output_details[0]['index'])[0],
|
||||
'detection_classes': self.interpreter.get_tensor(self.output_details[1]['index'])[0],
|
||||
'detection_scores': self.interpreter.get_tensor(self.output_details[2]['index'])[0],
|
||||
'num_detections': self.interpreter.get_tensor(self.output_details[3]['index'])[0]
|
||||
}
|
||||
output_dict['detection_classes'] = output_dict['detection_classes'].astype(np.int64)
|
||||
output_dict["detection_classes_name"] = [self.category_index[x] for x in output_dict["detection_classes"]]
|
||||
if nms and engine == "tflite":
|
||||
output_dict = self.apply_nms(output_dict, iou_thresh, score_thresh)
|
||||
if nms and engine == "edgetpu":
|
||||
valid = np.where(output_dict["detection_scores"] >= score_thresh)[0]
|
||||
if valid.size == 0:
|
||||
output_dict = {}
|
||||
elif valid.size == 1:
|
||||
output_dict = {
|
||||
'detection_boxes': output_dict["detection_boxes"][valid[0]:valid[0] + 1],
|
||||
'detection_classes': output_dict["detection_classes"][valid[0]:valid[0] + 1],
|
||||
'detection_scores': output_dict["detection_scores"][valid[0]:valid[0] + 1],
|
||||
'detection_classes_name': output_dict["detection_classes_name"][valid[0]:valid[0] + 1],
|
||||
'num_detections': 1,
|
||||
}
|
||||
else:
|
||||
output_dict = {
|
||||
'detection_boxes': output_dict["detection_boxes"][valid],
|
||||
'detection_classes': output_dict["detection_classes"][valid],
|
||||
'detection_scores': output_dict["detection_scores"][valid],
|
||||
'detection_classes_name': [x for i,x in enumerate(output_dict["detection_classes_name"]) if i in valid],
|
||||
'num_detections': valid.size,
|
||||
}
|
||||
return output_dict
|
||||
|
||||
def apply_nms(self, output_dict, iou_thresh=0.5, score_thresh=0.5):
|
||||
q = 90 # no of classes
|
||||
num = int(output_dict['num_detections'])
|
||||
boxes = np.zeros([1, num, q, 4])
|
||||
scores = np.zeros([1, num, q])
|
||||
# val = [0]*q
|
||||
for i in range(num):
|
||||
# indices = np.where(classes == output_dict['detection_classes'][i])[0][0]
|
||||
boxes[0, i, output_dict['detection_classes'][i], :] = output_dict['detection_boxes'][i]
|
||||
scores[0, i, output_dict['detection_classes'][i]] = output_dict['detection_scores'][i]
|
||||
nmsd = tf.image.combined_non_max_suppression(
|
||||
boxes=boxes, scores=scores, max_output_size_per_class=num, max_total_size=num, iou_threshold=iou_thresh,
|
||||
score_threshold=score_thresh, pad_per_class=False, clip_boxes=False
|
||||
)
|
||||
valid = nmsd.valid_detections[0].numpy()
|
||||
output_dict = {
|
||||
'detection_boxes': nmsd.nmsed_boxes[0].numpy()[:valid],
|
||||
'detection_classes': nmsd.nmsed_classes[0].numpy().astype(np.int64)[:valid],
|
||||
'detection_scores': nmsd.nmsed_scores[0].numpy()[:valid],
|
||||
'detection_classes_name': output_dict["detection_classes_name"][:valid]
|
||||
}
|
||||
return output_dict
|
||||
|
||||
def make_inference(self, img, nms=True, score_thresh=0.5, iou_thresh=0.5):
|
||||
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
img_rgb = cv2.resize(img_rgb, (300, 300), cv2.INTER_AREA)
|
||||
img_rgb = img_rgb.reshape([1, 300, 300, 3])
|
||||
self.interpreter.set_tensor(self.input_details[0]['index'], img_rgb)
|
||||
self.interpreter.invoke()
|
||||
output_dict = self.get_output_dict(nms, iou_thresh, score_thresh)
|
||||
return output_dict
|
||||
|
||||
|
||||
class ObjectDetector(Algorithm):
|
||||
""" Detects objects """
|
||||
|
||||
def __init__(self):
|
||||
""" Init some values and set seed point to None """
|
||||
self.objects = dict()
|
||||
self.detection_image = None
|
||||
self.lock = threading.Lock()
|
||||
self.thread = threading.Thread(target=self._detect, args=[], daemon=True)
|
||||
self.thread.start()
|
||||
|
||||
def process(self, img):
|
||||
"""
|
||||
Tries to segment a region around the seed point and calculates a new seed point by finding the segments center
|
||||
"""
|
||||
with self.lock:
|
||||
if self.detection_image is None:
|
||||
self.detection_image = np.copy(img)
|
||||
with self.lock:
|
||||
objects = copy(self.objects)
|
||||
h, w, c = img.shape
|
||||
if "detection_classes_name" in objects.keys():
|
||||
for i, cls in enumerate(objects["detection_classes_name"]):
|
||||
box = objects["detection_boxes"][i]
|
||||
score = objects["detection_scores"][i]
|
||||
name = cls["name"]
|
||||
y1, x1, y2, x2 = round(box[0] * h), round(box[1] * w), round(box[2] * h), round(box[3] * w)
|
||||
img = cv2.rectangle(img, (x1, y1), (x2, y2), color=(0, 0, 0), thickness=2)
|
||||
img = cv2.putText(img, "%s: %.2f" % (name, score), (x1, y1), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 0))
|
||||
|
||||
return img
|
||||
|
||||
def _detect(self):
|
||||
detector = Detector()
|
||||
while True:
|
||||
with self.lock:
|
||||
img = self.detection_image
|
||||
if img is None:
|
||||
sleep(.033)
|
||||
continue
|
||||
objects = detector.make_inference(img)
|
||||
with self.lock:
|
||||
self.objects = objects
|
||||
self.detection_image = None
|
||||
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
""" Selects a new seed point"""
|
||||
if event == cv2.EVENT_LBUTTONUP:
|
||||
pass
|
||||
|
||||
71
CV-App/algorithms/segmentation_tracker.py
Normal file
71
CV-App/algorithms/segmentation_tracker.py
Normal file
@@ -0,0 +1,71 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class SegmentationTracker(Algorithm):
|
||||
""" Tracks a point by re-identify a suitable segmentation """
|
||||
|
||||
def __init__(self):
|
||||
""" Init some values and set seed point to None """
|
||||
self.pos = None
|
||||
self.distance_threshold = 80
|
||||
self.reference_pixel = None
|
||||
|
||||
def process(self, img):
|
||||
"""
|
||||
Tries to segment a region around the seed point and calculates a new seed point by finding the segments center
|
||||
"""
|
||||
if self.pos is None:
|
||||
result = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
result = np.stack([result, result, result], axis=2)
|
||||
return result
|
||||
h, w, c = img.shape
|
||||
|
||||
if self.reference_pixel is None:
|
||||
self.reference_pixel = np.copy(img[self.pos[1], self.pos[0]])
|
||||
pixel_low, pixel_high = \
|
||||
np.maximum(0, self.reference_pixel-self.distance_threshold),\
|
||||
np.minimum(255, self.reference_pixel+self.distance_threshold)
|
||||
binary = cv2.inRange(img, pixel_low, pixel_high)
|
||||
|
||||
element = np.ones((5, 5), dtype=np.uint8)
|
||||
binary = cv2.erode(binary, element)
|
||||
binary = cv2.dilate(binary, element)
|
||||
sure_background = binary
|
||||
sure_foreground = np.zeros_like(sure_background)
|
||||
x, y = max(2, self.pos[0]), max(2, self.pos[1])
|
||||
sure_foreground[y-2:y+2, x-5:x+2] = 1
|
||||
unknown = np.maximum(0, sure_background - sure_foreground)
|
||||
|
||||
ret, markers = cv2.connectedComponents(sure_foreground)
|
||||
# Add one to all labels so that sure background is not 0, but 1
|
||||
markers = markers + 1
|
||||
# Now, mark the region of unknown with zero
|
||||
markers[unknown == 255] = 0
|
||||
markers = cv2.watershed(img, markers)
|
||||
|
||||
try:
|
||||
contours, hierarchy = cv2.findContours(((markers == 2) * 1).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
||||
c = contours[0]
|
||||
M = cv2.moments(c)
|
||||
cX = int(M["m10"] / M["m00"])
|
||||
cY = int(M["m01"] / M["m00"])
|
||||
self.pos = (min(cX, w-1), min(cY, h-1))
|
||||
except:
|
||||
pass
|
||||
|
||||
result = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
result = np.stack([result, result, result], axis=2)
|
||||
random_noise = np.random.randint(0, 255, (h, w), dtype=np.uint8)
|
||||
random_noise = cv2.applyColorMap(random_noise, colormap=cv2.COLORMAP_INFERNO)
|
||||
result[markers == 2] = random_noise[markers == 2]
|
||||
return result
|
||||
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
""" Selects a new seed point"""
|
||||
if event == cv2.EVENT_LBUTTONUP:
|
||||
self.pos = (x, y)
|
||||
self.reference_pixel = None
|
||||
|
||||
131
CV-App/algorithms/silhouette_ghost.py
Normal file
131
CV-App/algorithms/silhouette_ghost.py
Normal file
@@ -0,0 +1,131 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
from copy import deepcopy
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class SilhouetteGhost (Algorithm):
|
||||
|
||||
""" init function """
|
||||
def __init__(self):
|
||||
self.image_count = 0
|
||||
self.background = None
|
||||
self.background_update_rate = 0.2
|
||||
self.threshold = 15
|
||||
|
||||
""" Processes the input image"""
|
||||
def process(self, img):
|
||||
|
||||
""" 2.1 Vorverarbeitung """
|
||||
""" 2.1.1 Rauschreduktion """
|
||||
plotNoise = False # Schaltet die Rauschvisualisierung ein
|
||||
if plotNoise:
|
||||
self._plotNoise(img, "Rauschen vor Korrektur")
|
||||
img = self._211_Rauschreduktion(img)
|
||||
if plotNoise:
|
||||
self._plotNoise(img, "Rauschen nach Korrektur")
|
||||
""" 2.1.2 HistogrammSpreizung """
|
||||
img = self._212_HistogrammSpreizung(img)
|
||||
|
||||
|
||||
""" 2.2 Vordergrund-Detektion """
|
||||
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
h, w = img_gray.shape
|
||||
resized_img_gray = cv2.resize(img_gray, (int(w/2), int(h/2)), interpolation=cv2.INTER_NEAREST)
|
||||
blurred_img = cv2.GaussianBlur(resized_img_gray, (15, 15), 0)
|
||||
|
||||
if self.background is None:
|
||||
self.background = blurred_img
|
||||
self.background = (1 - self.background_update_rate) * self.background + self.background_update_rate * blurred_img
|
||||
|
||||
diff = blurred_img - self.background
|
||||
diff_abs = np.abs(diff)
|
||||
binary_image = diff_abs > self.threshold
|
||||
|
||||
""" 2.2.1 Opening und Closing """
|
||||
binary_image = self._221_OpeningClosing(binary_image)
|
||||
|
||||
""" 2.3 Canny-Edge und Bildmodifizierung """
|
||||
canny_edges = self._231_CannyEdge(resized_img_gray)
|
||||
|
||||
canny_edges = canny_edges * binary_image
|
||||
canny_edges = cv2.resize(canny_edges, (int(w), int(h)), interpolation=cv2.INTER_NEAREST)
|
||||
|
||||
return canny_edges
|
||||
|
||||
""" Reacts on mouse callbacks """
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
if event == cv2.EVENT_LBUTTONUP:
|
||||
print("A Mouse click happend! at position", x, y)
|
||||
|
||||
|
||||
def _plotNoise(self, img, name:str):
|
||||
height, width = np.array(img.shape[:2])
|
||||
centY = (height / 2).astype(int)
|
||||
centX = (width / 2).astype(int)
|
||||
|
||||
cutOut = 5
|
||||
tmpImg = deepcopy(img)
|
||||
tmpImg = tmpImg[centY - cutOut:centY + cutOut, centX - cutOut:centX + cutOut, :]
|
||||
|
||||
outSize = 500
|
||||
tmpImg = cv2.resize(tmpImg, (outSize, outSize), interpolation=cv2.INTER_NEAREST)
|
||||
|
||||
cv2.imshow(name, tmpImg)
|
||||
cv2.waitKey(1)
|
||||
|
||||
def _211_Rauschreduktion(self, img):
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.1.1 (Rauschunterdrückung)
|
||||
- Implementierung Mittelwertbildung über N Frames
|
||||
"""
|
||||
|
||||
|
||||
return img
|
||||
|
||||
def _212_HistogrammSpreizung(self, img):
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.1.2 (Histogrammspreizung)
|
||||
- Transformation HSV
|
||||
- Histogrammspreizung berechnen
|
||||
- Transformation BGR
|
||||
"""
|
||||
|
||||
return img
|
||||
|
||||
def _221_OpeningClosing(self, binary_image):
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.2.1 (Opening and Closing)
|
||||
- Implementieren Sie das Closing
|
||||
- Speichern Sie das aktuelle Bild vor und nach der Funktion beim Mausklick
|
||||
"""
|
||||
|
||||
return binary_image
|
||||
|
||||
def _231_CannyEdge (self, img_gray):
|
||||
"""
|
||||
Hier steht Ihr Code zu Aufgabe 2.3.1 (Manuelle Canny Edge Implementierung)
|
||||
- Glättung
|
||||
- Gradienten berechnen
|
||||
- Nicht-Maximum Unterdrückung
|
||||
- Hysterese Unterdrückung
|
||||
"""
|
||||
|
||||
""" 1. Glättung """
|
||||
|
||||
|
||||
""" 2. Gradienten berechnen """
|
||||
|
||||
|
||||
""" 3. Nicht-Maximum Unterdrückung """
|
||||
|
||||
|
||||
""" 4. Hysterese Unterdrückung """
|
||||
#parameter:
|
||||
thresh1 = 50
|
||||
thresh2 = 100
|
||||
|
||||
|
||||
return np.ones_like(img_gray) * 255 # hier eigenes Edge-Bild ausgeben
|
||||
21
CV-App/algorithms/spin.py
Normal file
21
CV-App/algorithms/spin.py
Normal file
@@ -0,0 +1,21 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class Spin(Algorithm):
|
||||
""" Rotates an image """
|
||||
|
||||
def __init__(self):
|
||||
self.current_angle = 0 # between 0 and 2 pi
|
||||
self.anlge_per_image = 360 / 100
|
||||
|
||||
def process(self, img):
|
||||
self.current_angle = (self.current_angle + self.anlge_per_image) % 360
|
||||
w, h = img.shape[1], img.shape[0]
|
||||
image_center = (w / 2, h / 2)
|
||||
rot_mat = cv2.getRotationMatrix2D(image_center, self.current_angle, 1.0)
|
||||
img = cv2.warpAffine(img, rot_mat, (w, h), flags=cv2.INTER_LINEAR)
|
||||
return img
|
||||
|
||||
30
CV-App/algorithms/tutorial_algorithm.py
Normal file
30
CV-App/algorithms/tutorial_algorithm.py
Normal file
@@ -0,0 +1,30 @@
|
||||
import cv2
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class TutorialAlgorithm(Algorithm):
|
||||
""" Writes the RGB values of an pixel to the output image """
|
||||
|
||||
def __init__(self):
|
||||
""" Init reference point with None value """
|
||||
|
||||
def process(self, img):
|
||||
"""
|
||||
Reads out the RGB values of the reference point and writes it to the output image
|
||||
"""
|
||||
if self.pos is not None:
|
||||
pixel = img[self.pos[1], self.pos[0]]
|
||||
text = "x:%s y:%s R:%s G:%s B:%s" % (self.pos[0], self.pos[1], pixel[2], pixel[1], pixel[0])
|
||||
else:
|
||||
text = "Click on the image!"
|
||||
font, org, font_scale, color, thickness = cv2.FONT_HERSHEY_SIMPLEX, (50, 50), 1, (0, 0, 0), 2
|
||||
image = cv2.putText(img, text, org, font, font_scale, color, thickness, cv2.LINE_AA)
|
||||
|
||||
return image
|
||||
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
""" Selects a new reference position"""
|
||||
if event == cv2.EVENT_LBUTTONUP:
|
||||
# Store x and y to the member value self.pos
|
||||
pass
|
||||
31
CV-App/algorithms/tutorial_algorithm_solution.py
Normal file
31
CV-App/algorithms/tutorial_algorithm_solution.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import cv2
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class TutorialAlgorithm(Algorithm):
|
||||
""" Writes the RGB values of an pixel to the output image """
|
||||
|
||||
def __init__(self):
|
||||
""" Init reference point with None value """
|
||||
self.pos = None
|
||||
|
||||
def process(self, img):
|
||||
"""
|
||||
Reads out the RGB values of the reference point and writes it to the output image
|
||||
"""
|
||||
if self.pos is not None:
|
||||
pixel = img[self.pos[1], self.pos[0]]
|
||||
text = "x:%s y:%s R:%s G:%s B:%s" % (self.pos[0], self.pos[1], pixel[2], pixel[1], pixel[0])
|
||||
else:
|
||||
text = "Click on the image!"
|
||||
font, org, font_scale, color, thickness = cv2.FONT_HERSHEY_SIMPLEX, (50, 50), 1, (0, 0, 0), 2
|
||||
image = cv2.putText(img, text, org, font, font_scale, color, thickness, cv2.LINE_AA)
|
||||
|
||||
return image
|
||||
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
""" Selects a new reference position"""
|
||||
if event == cv2.EVENT_LBUTTONUP:
|
||||
self.pos = (x, y)
|
||||
|
||||
31
CV-App/algorithms/white_balancing.py
Normal file
31
CV-App/algorithms/white_balancing.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class WhiteBalancing(Algorithm):
|
||||
""" White Balancing """
|
||||
|
||||
def __init__(self):
|
||||
""" Define Reference RGB values to (255, 255, 255) """
|
||||
self.max_b, self.max_g, self.max_r = 255, 255, 255
|
||||
self.last_image = None
|
||||
|
||||
def process(self, img):
|
||||
""" Performs white balancing based on the reference RGB values """
|
||||
self.last_image = img
|
||||
img = img.astype(np.float32)
|
||||
img[:, :, 0] = np.clip(img[:, :, 0], 0, self.max_b) * 255 / max(1, self.max_b)
|
||||
img[:, :, 1] = np.clip(img[:, :, 1], 0, self.max_g) * 255 / max(1, self.max_g)
|
||||
img[:, :, 2] = np.clip(img[:, :, 2], 0, self.max_r) * 255 / max(1, self.max_r)
|
||||
img = img.astype(np.uint8)
|
||||
return img
|
||||
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
""" Selects new reference RGB values, if left mouse button is clicked and self.last_image is defined """
|
||||
if self.last_image is None:
|
||||
return
|
||||
if event == cv2.EVENT_LBUTTONUP:
|
||||
self.max_b, self.max_g, self.max_r = \
|
||||
self.last_image[y, x, 0], self.last_image[y, x, 1], self.last_image[y, x, 2]
|
||||
BIN
CV-App/data/cv1.png
Normal file
BIN
CV-App/data/cv1.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 251 KiB |
BIN
CV-App/data/cv2.png
Normal file
BIN
CV-App/data/cv2.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 214 KiB |
BIN
CV-App/data/cv3.png
Normal file
BIN
CV-App/data/cv3.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 193 KiB |
91
CV-App/data/labelmap.txt
Normal file
91
CV-App/data/labelmap.txt
Normal file
@@ -0,0 +1,91 @@
|
||||
???
|
||||
person
|
||||
bicycle
|
||||
car
|
||||
motorcycle
|
||||
airplane
|
||||
bus
|
||||
train
|
||||
truck
|
||||
boat
|
||||
traffic light
|
||||
fire hydrant
|
||||
???
|
||||
stop sign
|
||||
parking meter
|
||||
bench
|
||||
bird
|
||||
cat
|
||||
dog
|
||||
horse
|
||||
sheep
|
||||
cow
|
||||
elephant
|
||||
bear
|
||||
zebra
|
||||
giraffe
|
||||
???
|
||||
backpack
|
||||
umbrella
|
||||
???
|
||||
???
|
||||
handbag
|
||||
tie
|
||||
suitcase
|
||||
frisbee
|
||||
skis
|
||||
snowboard
|
||||
sports ball
|
||||
kite
|
||||
baseball bat
|
||||
baseball glove
|
||||
skateboard
|
||||
surfboard
|
||||
tennis racket
|
||||
bottle
|
||||
???
|
||||
wine glass
|
||||
cup
|
||||
fork
|
||||
knife
|
||||
spoon
|
||||
bowl
|
||||
banana
|
||||
apple
|
||||
sandwich
|
||||
orange
|
||||
broccoli
|
||||
carrot
|
||||
hot dog
|
||||
pizza
|
||||
donut
|
||||
cake
|
||||
chair
|
||||
couch
|
||||
potted plant
|
||||
bed
|
||||
???
|
||||
dining table
|
||||
???
|
||||
???
|
||||
toilet
|
||||
???
|
||||
tv
|
||||
laptop
|
||||
mouse
|
||||
remote
|
||||
keyboard
|
||||
cell phone
|
||||
microwave
|
||||
oven
|
||||
toaster
|
||||
sink
|
||||
refrigerator
|
||||
???
|
||||
book
|
||||
clock
|
||||
vase
|
||||
scissors
|
||||
teddy bear
|
||||
hair drier
|
||||
toothbrush
|
||||
BIN
CV-App/data/tutorial1.png
Normal file
BIN
CV-App/data/tutorial1.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 334 KiB |
BIN
CV-App/data/tutorial2.png
Normal file
BIN
CV-App/data/tutorial2.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 340 KiB |
BIN
CV-App/data/tutorial3.png
Normal file
BIN
CV-App/data/tutorial3.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 343 KiB |
117
CV-App/exercise.md
Normal file
117
CV-App/exercise.md
Normal file
@@ -0,0 +1,117 @@
|
||||
# Übung: CV-Application
|
||||
Um diese Übung lösen zu können, lesen Sie das [README.md](README.md).
|
||||
|
||||
In dieser Übung vollenden Sie ein Skript, mit dem ein bestimmtes Pixel eines Bildes ausgewählt und dessen RGB-Werte angezeigt
|
||||
werden können. Für diese Übung werden die Dateien [algorithms/tutorial_algorithm.py](./algorithms/tutorial_algorithm.py) und
|
||||
[algorithms/\_\_init\_\_.py](./algorithms/__init__.py) modifiziert. Die Musterlösung für die Übung findet sich in der Datei
|
||||
[algorithms/tutorial_algorithm_solution.py](./algorithms/tutorial_algorithm_solution.py).
|
||||
|
||||
|
||||
## a) Einbinden des Algorithmus
|
||||
Öffnen Sie die Datei [algorithms/\_\_init\_\_.py](./algorithms/__init__.py). Der Inhalt wird ungefähr wie der folgende
|
||||
Code-Snippet aussehen:
|
||||
|
||||
```python
|
||||
class Algorithm:
|
||||
""" An abstract class to create custom algorithms """
|
||||
def process(self, img):
|
||||
""" Processes the input image"""
|
||||
return img
|
||||
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
""" Reacts on mouse callbacks """
|
||||
return
|
||||
|
||||
|
||||
''' Import algorithms to use'''
|
||||
from .image_to_gray import ImageToGray
|
||||
from .image_to_hue import ImageToHue
|
||||
from .motion_detector import MotionDetector
|
||||
from .white_balancing import WhiteBalancing
|
||||
from .spin import Spin
|
||||
from .segmentation_tracker import SegmentationTracker
|
||||
|
||||
''' Link Algorithms to keys '''
|
||||
algorithms = dict()
|
||||
algorithms["0"] = Algorithm
|
||||
algorithms["1"] = ImageToGray
|
||||
algorithms["2"] = ImageToHue
|
||||
algorithms["3"] = MotionDetector
|
||||
algorithms["4"] = WhiteBalancing
|
||||
algorithms["5"] = Spin
|
||||
algorithms["6"] = SegmentationTracker
|
||||
```
|
||||
|
||||
Ihre Aufgabe ist es nun, den Algorithmus ``TutorialAlgorithm`` zu importieren und der Taste **7** zuzuordnen.
|
||||
|
||||
## b) Vervollständigen des Scripts
|
||||
Öffnen Sie das Skript [algorithms/tutorial_algorithm.py](./algorithms/tutorial_algorithm.py). Der Inhalt der Datei ähnelt dem
|
||||
folgenden Code-Snippet:
|
||||
|
||||
```python
|
||||
import cv2
|
||||
|
||||
from . import Algorithm
|
||||
|
||||
|
||||
class TutorialAlgorithm(Algorithm):
|
||||
""" Writes the RGB values of an pixel to the output image """
|
||||
|
||||
def __init__(self):
|
||||
""" Init reference point with None value """
|
||||
### 1) INSERT self.pos ###
|
||||
|
||||
def process(self, img):
|
||||
"""
|
||||
Reads out the RGB values of the reference point and writes it to the output image
|
||||
"""
|
||||
if self.pos is not None:
|
||||
pixel = img[self.pos[1], self.pos[0]]
|
||||
text = "x:%s y:%s R:%s G:%s B:%s" % (self.pos[0], self.pos[1], pixel[2], pixel[1], pixel[0])
|
||||
else:
|
||||
text = "Click on the image!"
|
||||
font, org, font_scale, color, thickness = cv2.FONT_HERSHEY_SIMPLEX, (50, 50), 1, (0, 0, 0), 2
|
||||
image = cv2.putText(img, text, org, font, font_scale, color, thickness, cv2.LINE_AA)
|
||||
|
||||
return image
|
||||
|
||||
def mouse_callback(self, event, x, y, flags, param):
|
||||
""" Selects a new reference position"""
|
||||
if event == cv2.EVENT_LBUTTONUP:
|
||||
# Store x and y to the member value self.pos
|
||||
### 2) UPDATE self.pos ###
|
||||
|
||||
```
|
||||
|
||||
Zu sehen ist eine Klasse Namens ``TutorialAlgorithm``, welche aus der Klasse ``Algorithm`` abgeleitet wurde. Zu sehen sind
|
||||
die drei vordefinierten Funktionen ``__init__(self)``, ``process(self, img)`` und
|
||||
``def mouse_callback(self, event, x, y, flags, param)`` (siehe [README.md](README.md))
|
||||
|
||||
Die Funktion ``process(self, img)`` ist bereits fertig implementiert und schreibt einen Text auf das Eingangsbild. Sie
|
||||
greift auf die Variable ``self.pos`` zu, die bisher noch nicht definiert ist.
|
||||
|
||||
Definieren Sie die Member-Variable ``self.pos`` in der Funktion ``__init__(self)`` und weisen Sie ihr den initialen Wert
|
||||
*None* zu. Dafür vorgesehen ist die Zeile mit dem Inhalt ```### 1) INSERT self.pos ###```.
|
||||
|
||||
Nun soll die Variable bei jedem Mausklick mit einem neuen Wert überschrieben werden. Speichern Sie bei jedem Mausklick
|
||||
die x und y Werte als Tupel ``(x, y)`` in die Variable ``self.None``. Dafür vorgesehen ist die Zeile mit dem Inhalt
|
||||
``### 2) UPDATE self.pos ###``.
|
||||
|
||||
Das Programm ist nun einsatzbereit.
|
||||
|
||||
## c) Ausführen des Skripts
|
||||
|
||||
Führen Sie das Skript `main.py` aus diesem Verzeichnis mit dem Befehl
|
||||
|
||||
```bash
|
||||
python main.py --mode=screen
|
||||
```
|
||||
aus. Nach dem das Skript gestartet wurde, drücken Sie die Taste **7**, um Ihren Algorithmus zu aktivieren. Klicken Sie
|
||||
dann mit der Maustaste auf eine beliebige Stelle des Bildes. Nach dem Klick sollten die RGB-Werte der gewählten Position
|
||||
ausgegeben werden.
|
||||
|
||||
Die folgenden Abbildungen visualisieren einen beispielhaften Output aus dem Skript.
|
||||
|
||||
Nach Start des Programms | Nach Betätigen der Taste **7** | Nach dem Klick auf das Bild
|
||||
:-------------------------:|:-------------------------:|:-------------------------:
|
||||
 |  | 
|
||||
131
CV-App/main.py
Normal file
131
CV-App/main.py
Normal file
@@ -0,0 +1,131 @@
|
||||
"""
|
||||
Main file for starting the CV-Application
|
||||
More infos in the README.md file
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import cv2
|
||||
import platform
|
||||
import numpy as np
|
||||
import datetime
|
||||
|
||||
DEFAULT_CAMERA = 0
|
||||
DEFAULT_MODE = "screen" # "screen", "virtual_cam"
|
||||
DEFAULT_VIDEO = "DEFAULT VIDEO TO SHOW"
|
||||
WINDOW_NAME = "Output"
|
||||
FRAMERATE = 30
|
||||
|
||||
'''
|
||||
The following code is to setup the framework
|
||||
'''
|
||||
print("=== INITIALIZE FRAMEWORK === ")
|
||||
|
||||
# Read input arguments
|
||||
parser = argparse.ArgumentParser(description='CV-App to demonstrate basic CV algorithms in a usefull application')
|
||||
parser.add_argument(
|
||||
'--camera', type=int, default=DEFAULT_CAMERA, help='The camera to be opened by the app')
|
||||
parser.add_argument(
|
||||
'--mode', type=str, default=DEFAULT_MODE, help="Either 'virtual_cam' for camera emulation or 'screen' for testing")
|
||||
parser.add_argument(
|
||||
'--video', type=str, default=DEFAULT_VIDEO, help="The video to use if no camera is available")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Check if arguments are valid
|
||||
available_cameras = list()
|
||||
print("Availlable cameras:")
|
||||
for i in range(3):
|
||||
temp = cv2.VideoCapture(i)
|
||||
is_opened = temp.isOpened()
|
||||
if is_opened:
|
||||
available_cameras.append(i)
|
||||
print(" camera with id", i)
|
||||
temp.release()
|
||||
assert args.mode in ["screen", "virtual_cam"], "Wrong mode selected! '%s' is not existing!" % args.mode
|
||||
assert args.camera in available_cameras or args.camera == -1, "Wrong cam selected! '%s' is not existing!" % args.camera
|
||||
|
||||
# Get current OS and import camera emulator software (skip if mode=='screen' is used)
|
||||
current_os = platform.system()
|
||||
print("Working on ", current_os)
|
||||
if args.mode == "screen":
|
||||
def show(img):
|
||||
cv2.imshow(WINDOW_NAME, img)
|
||||
elif current_os == "Darwin":
|
||||
raise NotImplementedError
|
||||
elif current_os == "Linux":
|
||||
raise NotImplementedError
|
||||
elif current_os == "Windows":
|
||||
import pyvirtualcam
|
||||
cam = None
|
||||
|
||||
def show(img):
|
||||
global cam
|
||||
if cam is None:
|
||||
h, w, c = img.shape
|
||||
cam = pyvirtualcam.Camera(width=w, height=h, fps=20)
|
||||
if len(img.shape) == 2:
|
||||
img = np.stack([img, img, img], axis=2)
|
||||
cv2.imshow(WINDOW_NAME, img)
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
cam.send(img)
|
||||
cam.sleep_until_next_frame()
|
||||
|
||||
else:
|
||||
raise Exception("OS %s not known!" % current_os)
|
||||
|
||||
# Define CV algorithms you want to use in the application
|
||||
from algorithms import algorithms
|
||||
|
||||
current_algorithm_id = sorted(algorithms.keys())[0]
|
||||
current_algorithm = algorithms[current_algorithm_id]()
|
||||
cv2.namedWindow(WINDOW_NAME)
|
||||
cv2.setMouseCallback(WINDOW_NAME, current_algorithm.mouse_callback)
|
||||
|
||||
print("=== FINISHED INITIALIZING FRAMEWORK === \n\n")
|
||||
|
||||
|
||||
'''
|
||||
Following code runs the processing loop
|
||||
'''
|
||||
print("=== RUN PROCESSING LOOP === ")
|
||||
input_source = args.camera if args.camera != -1 else args.video
|
||||
print("Using input source", input_source)
|
||||
cap = cv2.VideoCapture(input_source)
|
||||
last_read = datetime.datetime.now()
|
||||
auto_focus = True
|
||||
auto_exposure = True
|
||||
while True:
|
||||
# Measure time to last read out to avoid to fast readout in videos
|
||||
if datetime.datetime.now() - last_read < datetime.timedelta(milliseconds=int(1000 / FRAMERATE)):
|
||||
continue
|
||||
last_read = datetime.datetime.now()
|
||||
# Read, process and show image
|
||||
ret, img = cap.read()
|
||||
if not ret and type(input_source) == str:
|
||||
cap = cv2.VideoCapture(input_source)
|
||||
ret, img = cap.read()
|
||||
img = current_algorithm.process(img)
|
||||
show(img)
|
||||
# Check if a new
|
||||
key = cv2.waitKey(1)
|
||||
if key == -1:
|
||||
continue
|
||||
elif key == 27:
|
||||
cap.release()
|
||||
break
|
||||
elif chr(key) in algorithms.keys():
|
||||
current_algorithm_id = chr(key)
|
||||
current_algorithm = algorithms[current_algorithm_id]()
|
||||
print("Set algorithm to %s selected by key '%s'" % (type(current_algorithm), chr(key)))
|
||||
cv2.setMouseCallback(WINDOW_NAME, current_algorithm.mouse_callback)
|
||||
elif chr(key) == "e" and type(input_source) == int:
|
||||
auto_exposure = not auto_exposure
|
||||
print("Set auto exposure to", int(auto_exposure))
|
||||
cap.set(propId=cv2.CAP_PROP_AUTO_EXPOSURE, value=int(auto_exposure))
|
||||
elif chr(key) == "f" and type(input_source) == int:
|
||||
auto_focus = not auto_focus
|
||||
print("Set auto focus to", int(auto_focus))
|
||||
cap.set(propId=cv2.CAP_PROP_AUTOFOCUS, value=int(auto_focus))
|
||||
|
||||
print("=== FINISHED PROCESSING LOOP AND STOP APPLICATION === ")
|
||||
|
||||
Reference in New Issue
Block a user