Initial commit with project files
This commit is contained in:
42
3_Signalorientierte_Bildverarbeitung/ü5/l_a.py
Normal file
42
3_Signalorientierte_Bildverarbeitung/ü5/l_a.py
Normal file
@@ -0,0 +1,42 @@
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
''' Bild laden und in den Frequenzraum transformieren '''
|
||||
img = cv2.imread("../../data/car2.png", cv2.IMREAD_GRAYSCALE)
|
||||
img = img.astype(float)
|
||||
i_max, i_min = np.max(img), np.min(img)
|
||||
img = (img - i_min) / (i_max - i_min)
|
||||
|
||||
cv2.imshow("Original", img )
|
||||
|
||||
''' 1. Logarithmieren '''
|
||||
img_log = np.maximum(img, 1/255) # log(0) ist illegal!
|
||||
img_log = np.log(img_log)
|
||||
|
||||
''' 2. in den Frequenzbereich transformieren '''
|
||||
IMG = np.fft.fft2(img_log)
|
||||
|
||||
''' 3. Niedrige mit H(k,l)Frequenzen unterdrücken '''
|
||||
gamma1, gamma2, gamma3 = 0.5, 0., 4
|
||||
H = np.zeros_like(img_log)
|
||||
for l in range(H.shape[0]):
|
||||
for k in range(H.shape[1]):
|
||||
if k < 1 and l < 1:
|
||||
H[l, k] = 1
|
||||
else:
|
||||
H[l, k] = gamma1 - (gamma1 - gamma2) * np.exp(-(k*k + l*l) / (gamma3 * gamma3))
|
||||
|
||||
IMG = IMG * H
|
||||
|
||||
''' 4. Rücktransformation '''
|
||||
img_filtered = np.fft.ifft2(IMG)
|
||||
img_filtered = img_filtered.astype(float)
|
||||
|
||||
''' 5. Umkehrfunktion der Logarithmierung '''
|
||||
img_filtered = np.exp(img_filtered)
|
||||
|
||||
''' Ergebnis anzeigen '''
|
||||
i_max, i_min = np.max(img_filtered), np.min(img_filtered)
|
||||
img_filtered = (img_filtered - i_min) / (i_max - i_min)
|
||||
cv2.imshow("Homomorphe Filterung", img_filtered)
|
||||
cv2.waitKey()
|
||||
Reference in New Issue
Block a user