Initial commit with project files
This commit is contained in:
93
3_Signalorientierte_Bildverarbeitung/ü1/l_b.py
Normal file
93
3_Signalorientierte_Bildverarbeitung/ü1/l_b.py
Normal file
@@ -0,0 +1,93 @@
|
||||
import numpy as np
|
||||
import cv2
|
||||
import math
|
||||
|
||||
|
||||
def dct(a: np.ndarray):
|
||||
a_freq = np.zeros_like(a)
|
||||
N, M = a_freq.shape[1], a_freq.shape[0]
|
||||
# Iteriere über jeden Koeffizienten
|
||||
for k in range(N):
|
||||
for m in range(M):
|
||||
dct_k_m = 0
|
||||
# Iteriere über jede Position im Ortsraum
|
||||
for x in range(N):
|
||||
for y in range(M):
|
||||
dct_k_m += a[y, x] * np.cos(k*np.pi*(2*x+1)/(2*N)) * np.cos(m*np.pi*(2*y+1)/(2*M))
|
||||
dct_k_m = 4 * dct_k_m / (np.sqrt(2*N) * np.sqrt(2*M))
|
||||
a_freq[m, k] = dct_k_m
|
||||
return a_freq
|
||||
|
||||
|
||||
def idct(a_freq: np.ndarray):
|
||||
a = np.zeros_like(a_freq)
|
||||
N, M = a_freq.shape[1], a_freq.shape[0]
|
||||
a_freq = (np.sqrt(2*N) * np.sqrt(2*M)) * a_freq / 16
|
||||
a_freq[0, :] = a_freq[0, :] / 2
|
||||
a_freq[:, 0] = a_freq[:, 0] / 2
|
||||
# Iteriere über jeden Koeffizienten
|
||||
for x in range(N):
|
||||
for y in range(M):
|
||||
f_x_y = 0 #a_freq[0, 0] / (4)# * np.sqrt(2))
|
||||
# Iteriere über jede Position im Ortsraum
|
||||
for k in range(N):
|
||||
for m in range(M):
|
||||
f_x_y += a_freq[m, k] * np.cos(k*np.pi*(2*x+1)/(2*N)) * np.cos(m*np.pi*(2*y+1)/(2*M))
|
||||
f_x_y = f_x_y / 4
|
||||
a[y, x] = f_x_y
|
||||
return a
|
||||
|
||||
|
||||
def remove_dct(img, rate):
|
||||
"""
|
||||
Diese Implementierung wendet die diskrete Fourier Transformation auf das Bild img an. Daraufhin werden die hoch-
|
||||
frequenten Anteile anteilig der Rate rate entfernt. Am Ende wird das Bild wieder in den Bildbereich transformiert.
|
||||
:param img:
|
||||
:param rate:
|
||||
:return:
|
||||
"""
|
||||
assert rate <= 1, "Die Rate muss kleiner gleich 1 sein!"
|
||||
|
||||
height, width = img.shape
|
||||
for i in range(math.ceil(width / 8)):
|
||||
for j in range(math.ceil(height / 8)):
|
||||
# Block extrahieren
|
||||
block = np.zeros((8, 8))
|
||||
horizontal_pixel, vertical_pixel = min(8, width - i * 8), min(8, height - j * 8)
|
||||
block[0:vertical_pixel, 0:horizontal_pixel] = \
|
||||
img[j * 8: (j * 8) + vertical_pixel, i * 8: (i * 8) + horizontal_pixel]
|
||||
# In den Frequenzbereich tranformieren
|
||||
block_freq = dct(block)
|
||||
# Hochfrequente Anteile löschen
|
||||
values_to_delete = 8 * 8 * rate
|
||||
values_deleted = 0
|
||||
for m in range(0, 16):
|
||||
for n in range(0, m + 1):
|
||||
if values_deleted >= values_to_delete:
|
||||
break
|
||||
if 7 - m + n < 0 or 7 - n < 0:
|
||||
continue
|
||||
block_freq[7 - m + n, 7 - n] = 0.
|
||||
values_deleted += 1
|
||||
# Rücktransformation in den Bildbereich
|
||||
block = idct(block_freq)
|
||||
# Einfügen in Ursprungsbild
|
||||
img[j * 8: (j * 8) + vertical_pixel, i * 8: (i * 8) + horizontal_pixel] = \
|
||||
block[0:vertical_pixel, 0:horizontal_pixel]
|
||||
|
||||
return img
|
||||
|
||||
|
||||
''' Bild laden '''
|
||||
img = cv2.imread("../../data/cameraman.png")
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
img = cv2.resize(img, (160, 160))
|
||||
img = (img.astype(np.float64) / 256)
|
||||
cv2.imshow("ORIGINAL", img)
|
||||
|
||||
''' Funktion anwenden '''
|
||||
img = remove_dct(img, 0.8)
|
||||
|
||||
''' Bild anzeigen '''
|
||||
cv2.imshow("IMG", img)
|
||||
cv2.waitKey(0)
|
||||
Reference in New Issue
Block a user