New time period calculation system, bind it also to the UI

This commit is contained in:
2023-12-22 23:20:39 +01:00
parent d21557b0f1
commit f843e01847
5 changed files with 284 additions and 47 deletions

View File

@@ -0,0 +1,56 @@
import os, json
from enums.PreferenceEnums import PrefenceEnums
# Location of the Cinnamon preference file since Cinnamon 5.4
pref_location = os.path.expanduser("~") + \
"/.config/cinnamon/spices/cinnamon-dynamic-wallpaper@TobiZog/cinnamon-dynamic-wallpaper@TobiZog.json"
def write_to_preferences(parameter: PrefenceEnums, value: str):
""" Write a preference value to the JSON file
Args:
parameter (PrefenceEnums): Name of the parameter
value (str): Value to write
"""
with open(pref_location, "r") as pref_file:
pref_data = json.load(pref_file)
if parameter in pref_data:
pref_data[parameter]["value"] = value
else:
pref_data[parameter] = {
"type": "entry",
"default": "",
"description": "",
"value": value
}
with open(pref_location, "w") as pref_file:
json.dump(pref_data, pref_file, separators=(',', ':'), indent=4)
def read_str_from_preferences(parameter: PrefenceEnums) -> str:
""" Read a value from the JSON file
Args:
parameter (PrefenceEnums): Name of the parameter to get
Returns:
str: Value of the parameter
"""
with open(pref_location, "r") as pref_file:
pref_data = json.load(pref_file)
if parameter in pref_data:
return pref_data[parameter]["value"]
else:
return ""
def read_int_from_preferences(parameter: PrefenceEnums) -> int:
value = read_str_from_preferences(parameter)
if value == "":
return 0
else:
return int(value)

View File

@@ -0,0 +1,182 @@
# # import datetime, math
# # day_ms = 1000 * 60 * 60 * 24
# # year_1970 = 2440588
# # year_2000 = 2451545
# # def from_julian(j) -> datetime.date:
# # return datetime.date(ms_date = (j + 0.5 - year_1970))
# # def sun_events_of_day(latitude, longitude, date):
# # rad = math.pi / 180
# # lw = rad * (-longitude)
# # d = (date / day_ms) - 0.5 + year_1970 - year_2000
# # n = math.floor(d - 0.0009 - lw / (2 * math.pi))
# # ds = 0.0009 + lw / (2 * math.pi) + n
# # M = rad * (357.5291 + 0.98560028 * ds)
# # C = rad * (1.9148 * math.sin(M) + 0.02 * math.sin(2 * M) + 0.0003 * math.sin(3 * M))
# # P = rad * 102.9372
# # L = M + C + P + math.pi
# # dec = math.asin(math.sin(rad * 23.4397) * math.sin(L))
# # angles = [-0.833, -6]
# # for angle in angles:
# # angle *= rad
# # angle = math.acos((math.sin(angle) - math.sin(rad * latitude) * math.sin(dec)) / (math.cos(rad * latitude) * math.cos(dec)))
# # angle = 0.0009 + (angle + lw) / (2 * math.pi) + n
# # j_noon = year_2000 + ds + 0.0053 * math.sin(M) - 0.0069 * math.sin(2 * L)
# # print(from_julian(j_noon - (year_2000 + angles[1] + 0.0053 * math.sin(M) - 0.0069 * math.sin(2 * L) - j_noon)))
# # sun_events_of_day(48.1663, 11.5683, datetime.datetime.now())
# import datetime, math
# from math import cos, sin, acos, asin, tan
# from math import degrees as deg, radians as rad
# from datetime import date, datetime, time
# DAY_MS = 1000 * 60 * 60 * 24
# YEAR_1970 = 2440588
# YEAR_2000 = 2451545
# def date_to_julian(year, month, day):
# if month <= 2:
# year += 1
# month += 12
# A = math.trunc(year / 100.)
# B = 2 - A + math.trunc(A / 4.)
# if year < 0:
# C = math.trunc((365.25 * year) - 0.75)
# else:
# C = math.trunc(365.25 * year)
# D = math.trunc(30.6001 * (month + 1))
# return B + C + D + day + 1720994.5
# latitude_rad = rad(latitude)
# n = date_to_julian(datetime.now().year, datetime.now().month, datetime.now().day) - YEAR_2000 + 0.0008
# jstar = n - deg(longitude) / 360
# M_deg = (357.5291 + 0.98560028 * jstar) % 360
# M = M_deg * math.pi / 180
# C = 1.9148 * sin(M) + 0.0200 * sin(2*M) + 0.003 * sin(3*M)
# lamda = math.fmod(M_deg + C + 180 + 102.9372, 360) * math.pi / 180
# Jtransit = 2451545.5 + jstar + 0.0053 * sin(M) - 0.0069 * sin(2 * lamda)
# earth_tilt_rad = rad(23.44)
# angle_delta = asin(sin(lamda) * sin(earth_tilt_rad))
# sun_disc_rad = rad(-0.83)
# os_omega =
# print(date_to_julian(2023, 12, 12))
# #s = sun(lat=48.1663, long=11.5683)
from math import pi, sin, asin, acos, cos
from datetime import datetime, timedelta
DAY_MS = 1000 * 60 * 60 * 24
YEAR_1970 = 2440588
YEAR_2000 = 2451545
class Suntimes:
def __init__(self, latitude, longitude) -> None:
self.latitude = latitude
self.longitude = longitude
self.date = (datetime.utcnow() - datetime(1970, 1, 1)).total_seconds() * 1000
self.sun_events_of_day()
def from_julian(self, j_date) -> datetime:
j_date = (j_date + 0.5 - YEAR_1970) * DAY_MS
return datetime.fromtimestamp(j_date / 1000)
def sun_events_of_day(self):
rad = pi / 180
lw = rad * (-self.longitude)
d = (self.date / DAY_MS) - 0.5 + YEAR_1970 - YEAR_2000
n = round(d - 0.0009 - lw / (2 * pi))
ds = 0.0009 + lw / (2 * pi) + n
self.M = rad * (357.5291 + 0.98560028 * ds)
C = rad * (1.9148 * sin(self.M) + 0.02 * sin(2 * self.M) + 0.0003 * sin(3 * self.M))
P = rad * 102.9372
self.L = self.M + C + P + pi
dec = asin(sin(rad * 23.4397) * sin(self.L))
self.j_noon = YEAR_2000 + ds + 0.0053 * sin(self.M) - 0.0069 * sin(2 * self.L)
# -8 = Start of Civil dawn/dusk
# -2 = Start of Sunrise/Sunset
# 0 = Start/End of daylight phases
self.angles = [-10, -4, 0]
for i in range(0, len(self.angles)):
self.angles[i] = rad * self.angles[i]
self.angles[i] = acos((sin(self.angles[i]) - sin(rad * self.latitude) * sin(dec)) /
(cos(rad * self.latitude) * cos(dec)))
self.angles[i] = 0.0009 + (self.angles[i] + lw) / (2 * pi) + n
def angle_correction(self, angle: float) -> datetime:
return (YEAR_2000 + angle + 0.0053 * sin(self.M) - 0.0069 * sin(2 * self.L))
def get_time_period(self, period_nr: int) -> list:
""" Get start and end time of a time period
Args:
period_nr (int): Number between 0 and 9
0 = Early Night
1 = Civial dawn
2 = Sunrise
3 = Morning
4 = Noon
5 = Afternoon
6 = Evening
7 = Sunset
8 = Civial Dusk
9 = Late Night
Returns:
list: Two datetime objects
"""
if period_nr == 0:
res = [datetime.now().replace(hour=0, minute=0, second=0, microsecond=0),
self.from_julian(2 * self.j_noon - self.angle_correction(self.angles[0])) - timedelta(minutes=1)]
elif period_nr <= 2:
res = [self.from_julian(2 * self.j_noon - self.angle_correction(self.angles[period_nr - 1])),
self.from_julian(2 * self.j_noon - self.angle_correction(self.angles[period_nr])) - timedelta(minutes=1)]
elif period_nr <= 6:
daylength = self.get_time_period(8)[0] - self.get_time_period(2)[1]
res = [self.get_time_period(2)[1] + ((daylength / 4) * (period_nr - 3)),
self.get_time_period(2)[1] + ((daylength / 4) * (period_nr - 2))]
elif period_nr <= 8:
res = [self.from_julian(self.angle_correction(self.angles[9 - period_nr])),
self.from_julian(self.angle_correction(self.angles[8 - period_nr])) - timedelta(minutes=1)]
elif period_nr == 9:
res = [self.from_julian(YEAR_2000 + self.angles[0] + 0.0053 * sin(self.M) - 0.0069 * sin(2 * self.L)),
datetime.now().replace(hour=23, minute=59, second=59, microsecond=0)]
return res

View File

@@ -0,0 +1,128 @@
import math
image_code = []
colors = [
"00193dff",
"05597fff",
"54babfff",
"bfe3c2ff",
"ffbf6bff",
"fdb55cff",
"f37f73ff",
"7f3d85ff",
"4a217aff",
"00193dff"
]
bar_pos_x = []
def create_bar_chart(image_width, image_height, times):
create_bar(image_width, image_height, times)
create_polylines(image_width, image_height)
create_time_markers(image_width, image_height)
# Write to file
image_code.insert(0, '<svg xmlns="http://www.w3.org/2000/svg" width="%s" height="%s">' % (image_width, image_height))
image_code.append('</svg>')
file = open("time_bar.svg", "w")
for i in image_code:
file.write(i + '\n')
def create_bar(image_width: int, image_height: int, times: list):
""" Generates the code for the horizontal multi-color bar chart
Args:
image_width (int): Total width of the image
image_height (int): Total height of the image
times (list): List of start times of the periods, in minutes
"""
x = 0
y = 40
width = 0
height = image_height - 80
times.append(1440)
# Adding the bar parts
for i in range(1, len(times)):
width = math.ceil((((100 / 1440) * (times[i] - times[i - 1]) / 100) * image_width))
image_code.append(
'<rect fill="#%s" x="%s" y="%s" width="%s" height="%s"/>' % (colors[i - 1], x, y, width, height)
)
bar_pos_x.append(x)
x += width
def create_time_markers(image_width: int, image_height: int):
""" Generates the code for the vertical hour markers
Args:
image_width (int): Total width of the image
image_height (int): Total height of the image
"""
for i in range(0, 8):
image_code.append(
'<line x1="%s" y1="40" x2="%s" y2="%s" stroke="gray" stroke-width="2" />' %
(i * (image_width // 8), i * (image_width // 8), image_height - 40)
)
image_code.append(
'<text x="%s" y="%s" fill="gray" font-size="20" font-family="Liberation Sans">%s</text>' %
(i * (image_width // 8) + 5, image_height - 45, i * 3)
)
def create_polylines(image_width: int, image_height: int):
""" Generates the code for the polylines which connect the images with the bar sections
Args:
image_width (int): Total width of the image
image_height (int): Total height of the image
"""
bar_x_start = 0
bar_pos_x.append(image_width)
for i in range(0, len(bar_pos_x) - 1):
# X-Middle of a bar
bar_mid = bar_x_start + (bar_pos_x[i + 1] - bar_x_start) / 2
# Position of the image in the window
image_x = (image_width - 32) / 10 + ((i // 2) % 5) * image_width / 5
# i == 0, 2, 4, ... => Upper Polylines
if (i % 2 == 0):
polyline_y = 0
else:
polyline_y = image_height
if i == 0 or i == 8:
polyline_x = 30
elif i == 2 or i == 6:
polyline_x = 20
elif i == 1 or i == 9:
polyline_x = image_height - 30
elif i == 3 or i == 7:
polyline_x = image_height - 20
elif i == 5:
polyline_x = image_height - 10
else:
polyline_x = 10
image_code.append(
'<polyline points="%s,%s %s,%s %s,%s %s,%s" stroke="#%s" fill="none" stroke-width="5" />' %
(image_x, polyline_y, image_x, polyline_x, bar_mid, polyline_x, bar_mid, image_height / 2, colors[i])
)
# Store the end point of the bar as start point of the next
bar_x_start = bar_pos_x[i + 1]
# Hannover
#create_bar_chart(1036, 180, [0, 455, 494, 523, 673, 792, 882, 941, 973, 1013])
# Other Test bar
#create_bar_chart(1036, 180, [0, 180, 190, 523, 673, 792, 882, 941, 973, 1300])