Documentation, change two colors of bar graph

This commit is contained in:
2023-12-22 23:51:09 +01:00
parent f843e01847
commit 0cfe14feed
3 changed files with 65 additions and 118 deletions

View File

@@ -29,6 +29,7 @@
<property name="window-position">center</property>
<property name="default-width">1024</property>
<property name="default-height">400</property>
<property name="icon">../icon.png</property>
<property name="gravity">center</property>
<signal name="destroy" handler="onDestroy" swapped="no"/>
<child>

View File

@@ -1,118 +1,44 @@
# # import datetime, math
# # day_ms = 1000 * 60 * 60 * 24
# # year_1970 = 2440588
# # year_2000 = 2451545
# # def from_julian(j) -> datetime.date:
# # return datetime.date(ms_date = (j + 0.5 - year_1970))
# # def sun_events_of_day(latitude, longitude, date):
# # rad = math.pi / 180
# # lw = rad * (-longitude)
# # d = (date / day_ms) - 0.5 + year_1970 - year_2000
# # n = math.floor(d - 0.0009 - lw / (2 * math.pi))
# # ds = 0.0009 + lw / (2 * math.pi) + n
# # M = rad * (357.5291 + 0.98560028 * ds)
# # C = rad * (1.9148 * math.sin(M) + 0.02 * math.sin(2 * M) + 0.0003 * math.sin(3 * M))
# # P = rad * 102.9372
# # L = M + C + P + math.pi
# # dec = math.asin(math.sin(rad * 23.4397) * math.sin(L))
# # angles = [-0.833, -6]
# # for angle in angles:
# # angle *= rad
# # angle = math.acos((math.sin(angle) - math.sin(rad * latitude) * math.sin(dec)) / (math.cos(rad * latitude) * math.cos(dec)))
# # angle = 0.0009 + (angle + lw) / (2 * math.pi) + n
# # j_noon = year_2000 + ds + 0.0053 * math.sin(M) - 0.0069 * math.sin(2 * L)
# # print(from_julian(j_noon - (year_2000 + angles[1] + 0.0053 * math.sin(M) - 0.0069 * math.sin(2 * L) - j_noon)))
# # sun_events_of_day(48.1663, 11.5683, datetime.datetime.now())
# import datetime, math
# from math import cos, sin, acos, asin, tan
# from math import degrees as deg, radians as rad
# from datetime import date, datetime, time
# DAY_MS = 1000 * 60 * 60 * 24
# YEAR_1970 = 2440588
# YEAR_2000 = 2451545
# def date_to_julian(year, month, day):
# if month <= 2:
# year += 1
# month += 12
# A = math.trunc(year / 100.)
# B = 2 - A + math.trunc(A / 4.)
# if year < 0:
# C = math.trunc((365.25 * year) - 0.75)
# else:
# C = math.trunc(365.25 * year)
# D = math.trunc(30.6001 * (month + 1))
# return B + C + D + day + 1720994.5
# latitude_rad = rad(latitude)
# n = date_to_julian(datetime.now().year, datetime.now().month, datetime.now().day) - YEAR_2000 + 0.0008
# jstar = n - deg(longitude) / 360
# M_deg = (357.5291 + 0.98560028 * jstar) % 360
# M = M_deg * math.pi / 180
# C = 1.9148 * sin(M) + 0.0200 * sin(2*M) + 0.003 * sin(3*M)
# lamda = math.fmod(M_deg + C + 180 + 102.9372, 360) * math.pi / 180
# Jtransit = 2451545.5 + jstar + 0.0053 * sin(M) - 0.0069 * sin(2 * lamda)
# earth_tilt_rad = rad(23.44)
# angle_delta = asin(sin(lamda) * sin(earth_tilt_rad))
# sun_disc_rad = rad(-0.83)
# os_omega =
# print(date_to_julian(2023, 12, 12))
# #s = sun(lat=48.1663, long=11.5683)
from math import pi, sin, asin, acos, cos
from datetime import datetime, timedelta
# Constants
DAY_MS = 1000 * 60 * 60 * 24
YEAR_1970 = 2440588
# Julian date of 01.01.2000 11:59 UTC
YEAR_2000 = 2451545
class Suntimes:
def __init__(self, latitude, longitude) -> None:
def __init__(self, latitude: float, longitude: float) -> None:
""" Initialization
Args:
latitude (float): Latitude of the position
longitude (float): Longitude of the position
"""
self.latitude = latitude
self.longitude = longitude
self.date = (datetime.utcnow() - datetime(1970, 1, 1)).total_seconds() * 1000
self.sun_events_of_day()
def from_julian(self, j_date) -> datetime:
def from_julian(self, j_date: float) -> datetime:
""" Convert Julian date to a datetime
Args:
j_date (float): Julian date
Returns:
datetime: Converted datetime object
"""
j_date = (j_date + 0.5 - YEAR_1970) * DAY_MS
return datetime.fromtimestamp(j_date / 1000)
def sun_events_of_day(self):
""" Calculate all values to estimate the day periods
"""
rad = pi / 180
lw = rad * (-self.longitude)
@@ -139,9 +65,19 @@ class Suntimes:
(cos(rad * self.latitude) * cos(dec)))
self.angles[i] = 0.0009 + (self.angles[i] + lw) / (2 * pi) + n
def angle_correction(self, angle: float) -> datetime:
return (YEAR_2000 + angle + 0.0053 * sin(self.M) - 0.0069 * sin(2 * self.L))
def angle_correction(self, angle: float) -> float:
""" Last correction for the sun angle
Args:
angle (float): Angle before the correction
Returns:
float: Angle after the correction
"""
return YEAR_2000 + angle + 0.0053 * sin(self.M) - 0.0069 * sin(2 * self.L)
def get_time_period(self, period_nr: int) -> list:
""" Get start and end time of a time period
@@ -161,20 +97,29 @@ class Suntimes:
Returns:
list: Two datetime objects
"""
# Early night
if period_nr == 0:
res = [datetime.now().replace(hour=0, minute=0, second=0, microsecond=0),
self.from_julian(2 * self.j_noon - self.angle_correction(self.angles[0])) - timedelta(minutes=1)]
# Civilian dawn, Sunrise
elif period_nr <= 2:
res = [self.from_julian(2 * self.j_noon - self.angle_correction(self.angles[period_nr - 1])),
self.from_julian(2 * self.j_noon - self.angle_correction(self.angles[period_nr])) - timedelta(minutes=1)]
# Morning, Noon, Afternoon, Evening
elif period_nr <= 6:
daylength = self.get_time_period(8)[0] - self.get_time_period(2)[1]
res = [self.get_time_period(2)[1] + ((daylength / 4) * (period_nr - 3)),
self.get_time_period(2)[1] + ((daylength / 4) * (period_nr - 2))]
# Sunset, Civial dusk
elif period_nr <= 8:
res = [self.from_julian(self.angle_correction(self.angles[9 - period_nr])),
self.from_julian(self.angle_correction(self.angles[8 - period_nr])) - timedelta(minutes=1)]
# Late Night
elif period_nr == 9:
res = [self.from_julian(YEAR_2000 + self.angles[0] + 0.0053 * sin(self.M) - 0.0069 * sin(2 * self.L)),
datetime.now().replace(hour=23, minute=59, second=59, microsecond=0)]

View File

@@ -3,21 +3,28 @@ import math
image_code = []
colors = [
"00193dff",
"05597fff",
"54babfff",
"bfe3c2ff",
"ffbf6bff",
"fdb55cff",
"f37f73ff",
"7f3d85ff",
"4a217aff",
"00193dff"
"00193d",
"05597f",
"54babf",
"bfe3c2",
"ffbf6b",
"fdb55c",
"f37f73",
"b45bbc",
"7e38ce",
"00285f"
]
bar_pos_x = []
def create_bar_chart(image_width, image_height, times):
def create_bar_chart(image_width: int, image_height: int, times: list):
""" Create a time bar chart
Args:
image_width (int): Width of the image in pixel
image_height (int): Height of the image in pixel
times (list): List of start times of the periods in minutes since midnight
"""
create_bar(image_width, image_height, times)
create_polylines(image_width, image_height)
create_time_markers(image_width, image_height)
@@ -120,9 +127,3 @@ def create_polylines(image_width: int, image_height: int):
# Store the end point of the bar as start point of the next
bar_x_start = bar_pos_x[i + 1]
# Hannover
#create_bar_chart(1036, 180, [0, 455, 494, 523, 673, 792, 882, 941, 973, 1013])
# Other Test bar
#create_bar_chart(1036, 180, [0, 180, 190, 523, 673, 792, 882, 941, 973, 1300])